Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvadd | Structured version Visualization version GIF version |
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
rrvadd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
rrvadd.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
rrvadd.3 | ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) |
Ref | Expression |
---|---|
rrvadd | ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5134 | . . . 4 ⊢ Ⅎ𝑎(𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) | |
2 | rrvadd.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
3 | rrvadd.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
4 | 2, 3 | rrvvf 31943 | . . . 4 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
5 | rrvadd.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) | |
6 | 2, 5 | rrvvf 31943 | . . . 4 ⊢ (𝜑 → 𝑌:∪ dom 𝑃⟶ℝ) |
7 | 2 | unveldomd 31914 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
8 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) | |
9 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))) | |
10 | 1, 4, 6, 7, 8, 9 | ofoprabco 30538 | . . 3 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉))) |
11 | domprobsiga 31910 | . . . . 5 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
13 | brsigarn 31684 | . . . . . 6 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
14 | elrnsiga 31626 | . . . . . 6 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
15 | 13, 14 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
16 | sxsiga 31691 | . . . . 5 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ 𝔅ℝ ∈ ∪ ran sigAlgebra) → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) | |
17 | 15, 15, 16 | syl2anc 587 | . . . 4 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) |
18 | 2 | rrvmbfm 31941 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
19 | 3, 18 | mpbid 235 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
20 | 2 | rrvmbfm 31941 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
21 | 5, 20 | mpbid 235 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
22 | fveq2 6663 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) | |
23 | fveq2 6663 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) | |
24 | 22, 23 | opeq12d 4774 | . . . . . 6 ⊢ (𝑎 = 𝑏 → 〈(𝑋‘𝑎), (𝑌‘𝑎)〉 = 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
25 | 24 | cbvmptv 5139 | . . . . 5 ⊢ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑏 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
26 | 12, 15, 15, 19, 21, 25 | mbfmco2 31764 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) ∈ (dom 𝑃MblFnM(𝔅ℝ ×s 𝔅ℝ))) |
27 | eqid 2758 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
28 | 27 | raddcn 31413 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))) |
30 | 27 | sxbrsiga 31789 | . . . . . 6 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))) |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))) |
32 | df-brsiga 31682 | . . . . . 6 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ = (sigaGen‘(topGen‘ran (,)))) |
34 | 29, 31, 33 | cnmbfm 31762 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅ℝ ×s 𝔅ℝ)MblFnM𝔅ℝ)) |
35 | 12, 17, 15, 26, 34 | mbfmco 31763 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
36 | 10, 35 | eqeltrd 2852 | . 2 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
37 | 2 | rrvmbfm 31941 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ))) |
38 | 36, 37 | mpbird 260 | 1 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 〈cop 4531 ∪ cuni 4801 ↦ cmpt 5116 dom cdm 5528 ran crn 5529 ∘ ccom 5532 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 ∘f cof 7409 ℝcr 10587 + caddc 10591 (,)cioo 12792 topGenctg 16783 Cn ccn 21938 ×t ctx 22274 sigAlgebracsiga 31608 sigaGencsigagen 31638 𝔅ℝcbrsiga 31681 ×s csx 31688 MblFnMcmbfm 31749 Probcprb 31906 rRndVarcrrv 31939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-ac2 9936 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 ax-addf 10667 ax-mulf 10668 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-fi 8921 df-sup 8952 df-inf 8953 df-oi 9020 df-dju 9376 df-card 9414 df-acn 9417 df-ac 9589 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-mod 13300 df-seq 13432 df-exp 13493 df-fac 13697 df-bc 13726 df-hash 13754 df-shft 14487 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-ef 15482 df-sin 15484 df-cos 15485 df-pi 15487 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-starv 16652 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-unif 16660 df-hom 16661 df-cco 16662 df-rest 16768 df-topn 16769 df-0g 16787 df-gsum 16788 df-topgen 16789 df-pt 16790 df-prds 16793 df-xrs 16847 df-qtop 16852 df-imas 16853 df-xps 16855 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-submnd 18037 df-mulg 18306 df-cntz 18528 df-cmn 18989 df-psmet 20172 df-xmet 20173 df-met 20174 df-bl 20175 df-mopn 20176 df-fbas 20177 df-fg 20178 df-cnfld 20181 df-refld 20384 df-top 21608 df-topon 21625 df-topsp 21647 df-bases 21660 df-cld 21733 df-ntr 21734 df-cls 21735 df-nei 21812 df-lp 21850 df-perf 21851 df-cn 21941 df-cnp 21942 df-haus 22029 df-cmp 22101 df-tx 22276 df-hmeo 22469 df-fil 22560 df-fm 22652 df-flim 22653 df-flf 22654 df-fcls 22655 df-xms 23036 df-ms 23037 df-tms 23038 df-cncf 23593 df-cfil 23969 df-cmet 23971 df-cms 24049 df-limc 24579 df-dv 24580 df-log 25261 df-cxp 25262 df-logb 25464 df-esum 31528 df-siga 31609 df-sigagen 31639 df-brsiga 31682 df-sx 31689 df-meas 31696 df-mbfm 31750 df-prob 31907 df-rrv 31940 |
This theorem is referenced by: rrvsum 31953 |
Copyright terms: Public domain | W3C validator |