Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvadd Structured version   Visualization version   GIF version

Theorem rrvadd 33940
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
rrvadd.1 (𝜑𝑃 ∈ Prob)
rrvadd.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
rrvadd.3 (𝜑𝑌 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvadd (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))

Proof of Theorem rrvadd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5246 . . . 4 𝑎(𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)
2 rrvadd.1 . . . . 5 (𝜑𝑃 ∈ Prob)
3 rrvadd.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 33932 . . . 4 (𝜑𝑋: dom 𝑃⟶ℝ)
5 rrvadd.3 . . . . 5 (𝜑𝑌 ∈ (rRndVar‘𝑃))
62, 5rrvvf 33932 . . . 4 (𝜑𝑌: dom 𝑃⟶ℝ)
72unveldomd 33903 . . . 4 (𝜑 dom 𝑃 ∈ dom 𝑃)
8 eqidd 2725 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩))
9 eqidd 2725 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)))
101, 4, 6, 7, 8, 9ofoprabco 32358 . . 3 (𝜑 → (𝑋f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)))
11 domprobsiga 33899 . . . . 5 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
122, 11syl 17 . . . 4 (𝜑 → dom 𝑃 ran sigAlgebra)
13 brsigarn 33671 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
14 elrnsiga 33613 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1513, 14mp1i 13 . . . . 5 (𝜑 → 𝔅 ran sigAlgebra)
16 sxsiga 33678 . . . . 5 ((𝔅 ran sigAlgebra ∧ 𝔅 ran sigAlgebra) → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
1715, 15, 16syl2anc 583 . . . 4 (𝜑 → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
182rrvmbfm 33930 . . . . . 6 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
193, 18mpbid 231 . . . . 5 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
202rrvmbfm 33930 . . . . . 6 (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅)))
215, 20mpbid 231 . . . . 5 (𝜑𝑌 ∈ (dom 𝑃MblFnM𝔅))
22 fveq2 6881 . . . . . . 7 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
23 fveq2 6881 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
2422, 23opeq12d 4873 . . . . . 6 (𝑎 = 𝑏 → ⟨(𝑋𝑎), (𝑌𝑎)⟩ = ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2524cbvmptv 5251 . . . . 5 (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑏 dom 𝑃 ↦ ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2612, 15, 15, 19, 21, 25mbfmco2 33753 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) ∈ (dom 𝑃MblFnM(𝔅 ×s 𝔅)))
27 eqid 2724 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
2827raddcn 33398 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))
2928a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))))
3027sxbrsiga 33778 . . . . . 6 (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))
3130a1i 11 . . . . 5 (𝜑 → (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))))
32 df-brsiga 33669 . . . . . 6 𝔅 = (sigaGen‘(topGen‘ran (,)))
3332a1i 11 . . . . 5 (𝜑 → 𝔅 = (sigaGen‘(topGen‘ran (,))))
3429, 31, 33cnmbfm 33751 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅 ×s 𝔅)MblFnM𝔅))
3512, 17, 15, 26, 34mbfmco 33752 . . 3 (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)) ∈ (dom 𝑃MblFnM𝔅))
3610, 35eqeltrd 2825 . 2 (𝜑 → (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅))
372rrvmbfm 33930 . 2 (𝜑 → ((𝑋f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅)))
3836, 37mpbird 257 1 (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4626   cuni 4899  cmpt 5221  dom cdm 5666  ran crn 5667  ccom 5670  cfv 6533  (class class class)co 7401  cmpo 7403  f cof 7661  cr 11105   + caddc 11109  (,)cioo 13321  topGenctg 17382   Cn ccn 23050   ×t ctx 23386  sigAlgebracsiga 33595  sigaGencsigagen 33625  𝔅cbrsiga 33668   ×s csx 33675  MblFnMcmbfm 33736  Probcprb 33895  rRndVarcrrv 33928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-refld 21466  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-cmp 23213  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-fcls 23767  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-cfil 25105  df-cmet 25107  df-cms 25185  df-limc 25717  df-dv 25718  df-log 26407  df-cxp 26408  df-logb 26613  df-esum 33515  df-siga 33596  df-sigagen 33626  df-brsiga 33669  df-sx 33676  df-meas 33683  df-mbfm 33737  df-prob 33896  df-rrv 33929
This theorem is referenced by:  rrvsum  33942
  Copyright terms: Public domain W3C validator