|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvadd | Structured version Visualization version GIF version | ||
| Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| rrvadd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) | 
| rrvadd.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | 
| rrvadd.3 | ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) | 
| Ref | Expression | 
|---|---|
| rrvadd | ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfmpt1 5249 | . . . 4 ⊢ Ⅎ𝑎(𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) | |
| 2 | rrvadd.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 3 | rrvadd.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 4 | 2, 3 | rrvvf 34447 | . . . 4 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) | 
| 5 | rrvadd.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) | |
| 6 | 2, 5 | rrvvf 34447 | . . . 4 ⊢ (𝜑 → 𝑌:∪ dom 𝑃⟶ℝ) | 
| 7 | 2 | unveldomd 34418 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) | 
| 8 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) | |
| 9 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))) | |
| 10 | 1, 4, 6, 7, 8, 9 | ofoprabco 32675 | . . 3 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉))) | 
| 11 | domprobsiga 34414 | . . . . 5 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) | 
| 13 | brsigarn 34186 | . . . . . 6 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 14 | elrnsiga 34128 | . . . . . 6 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 15 | 13, 14 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) | 
| 16 | sxsiga 34193 | . . . . 5 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ 𝔅ℝ ∈ ∪ ran sigAlgebra) → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) | |
| 17 | 15, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) | 
| 18 | 2 | rrvmbfm 34445 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) | 
| 19 | 3, 18 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) | 
| 20 | 2 | rrvmbfm 34445 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ))) | 
| 21 | 5, 20 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ)) | 
| 22 | fveq2 6905 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) | |
| 23 | fveq2 6905 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) | |
| 24 | 22, 23 | opeq12d 4880 | . . . . . 6 ⊢ (𝑎 = 𝑏 → 〈(𝑋‘𝑎), (𝑌‘𝑎)〉 = 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) | 
| 25 | 24 | cbvmptv 5254 | . . . . 5 ⊢ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑏 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) | 
| 26 | 12, 15, 15, 19, 21, 25 | mbfmco2 34268 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) ∈ (dom 𝑃MblFnM(𝔅ℝ ×s 𝔅ℝ))) | 
| 27 | eqid 2736 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 28 | 27 | raddcn 33929 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))) | 
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))) | 
| 30 | 27 | sxbrsiga 34293 | . . . . . 6 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))) | 
| 31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))) | 
| 32 | df-brsiga 34184 | . . . . . 6 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ = (sigaGen‘(topGen‘ran (,)))) | 
| 34 | 29, 31, 33 | cnmbfm 34266 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅ℝ ×s 𝔅ℝ)MblFnM𝔅ℝ)) | 
| 35 | 12, 17, 15, 26, 34 | mbfmco 34267 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) ∈ (dom 𝑃MblFnM𝔅ℝ)) | 
| 36 | 10, 35 | eqeltrd 2840 | . 2 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ)) | 
| 37 | 2 | rrvmbfm 34445 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ))) | 
| 38 | 36, 37 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 〈cop 4631 ∪ cuni 4906 ↦ cmpt 5224 dom cdm 5684 ran crn 5685 ∘ ccom 5688 ‘cfv 6560 (class class class)co 7432 ∈ cmpo 7434 ∘f cof 7696 ℝcr 11155 + caddc 11159 (,)cioo 13388 topGenctg 17483 Cn ccn 23233 ×t ctx 23569 sigAlgebracsiga 34110 sigaGencsigagen 34140 𝔅ℝcbrsiga 34183 ×s csx 34190 MblFnMcmbfm 34251 Probcprb 34410 rRndVarcrrv 34443 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-ac2 10504 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-acn 9983 df-ac 10157 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ioc 13393 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 df-pi 16109 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-refld 21624 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lp 23145 df-perf 23146 df-cn 23236 df-cnp 23237 df-haus 23324 df-cmp 23396 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-fcls 23950 df-xms 24331 df-ms 24332 df-tms 24333 df-cncf 24905 df-cfil 25290 df-cmet 25292 df-cms 25370 df-limc 25902 df-dv 25903 df-log 26599 df-cxp 26600 df-logb 26809 df-esum 34030 df-siga 34111 df-sigagen 34141 df-brsiga 34184 df-sx 34191 df-meas 34198 df-mbfm 34252 df-prob 34411 df-rrv 34444 | 
| This theorem is referenced by: rrvsum 34457 | 
| Copyright terms: Public domain | W3C validator |