Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvadd | Structured version Visualization version GIF version |
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
rrvadd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
rrvadd.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
rrvadd.3 | ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) |
Ref | Expression |
---|---|
rrvadd | ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfmpt1 5182 | . . . 4 ⊢ Ⅎ𝑎(𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) | |
2 | rrvadd.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
3 | rrvadd.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
4 | 2, 3 | rrvvf 32411 | . . . 4 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
5 | rrvadd.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) | |
6 | 2, 5 | rrvvf 32411 | . . . 4 ⊢ (𝜑 → 𝑌:∪ dom 𝑃⟶ℝ) |
7 | 2 | unveldomd 32382 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
8 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) | |
9 | eqidd 2739 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))) | |
10 | 1, 4, 6, 7, 8, 9 | ofoprabco 31001 | . . 3 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉))) |
11 | domprobsiga 32378 | . . . . 5 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
13 | brsigarn 32152 | . . . . . 6 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
14 | elrnsiga 32094 | . . . . . 6 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
15 | 13, 14 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
16 | sxsiga 32159 | . . . . 5 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ 𝔅ℝ ∈ ∪ ran sigAlgebra) → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) | |
17 | 15, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) |
18 | 2 | rrvmbfm 32409 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
19 | 3, 18 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
20 | 2 | rrvmbfm 32409 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
21 | 5, 20 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
22 | fveq2 6774 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) | |
23 | fveq2 6774 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) | |
24 | 22, 23 | opeq12d 4812 | . . . . . 6 ⊢ (𝑎 = 𝑏 → 〈(𝑋‘𝑎), (𝑌‘𝑎)〉 = 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
25 | 24 | cbvmptv 5187 | . . . . 5 ⊢ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑏 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
26 | 12, 15, 15, 19, 21, 25 | mbfmco2 32232 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) ∈ (dom 𝑃MblFnM(𝔅ℝ ×s 𝔅ℝ))) |
27 | eqid 2738 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
28 | 27 | raddcn 31879 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))) |
29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))) |
30 | 27 | sxbrsiga 32257 | . . . . . 6 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))) |
31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))) |
32 | df-brsiga 32150 | . . . . . 6 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ = (sigaGen‘(topGen‘ran (,)))) |
34 | 29, 31, 33 | cnmbfm 32230 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅ℝ ×s 𝔅ℝ)MblFnM𝔅ℝ)) |
35 | 12, 17, 15, 26, 34 | mbfmco 32231 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
36 | 10, 35 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
37 | 2 | rrvmbfm 32409 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ))) |
38 | 36, 37 | mpbird 256 | 1 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 〈cop 4567 ∪ cuni 4839 ↦ cmpt 5157 dom cdm 5589 ran crn 5590 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ∘f cof 7531 ℝcr 10870 + caddc 10874 (,)cioo 13079 topGenctg 17148 Cn ccn 22375 ×t ctx 22711 sigAlgebracsiga 32076 sigaGencsigagen 32106 𝔅ℝcbrsiga 32149 ×s csx 32156 MblFnMcmbfm 32217 Probcprb 32374 rRndVarcrrv 32407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-refld 20810 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-cmp 22538 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-fcls 23092 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-cfil 24419 df-cmet 24421 df-cms 24499 df-limc 25030 df-dv 25031 df-log 25712 df-cxp 25713 df-logb 25915 df-esum 31996 df-siga 32077 df-sigagen 32107 df-brsiga 32150 df-sx 32157 df-meas 32164 df-mbfm 32218 df-prob 32375 df-rrv 32408 |
This theorem is referenced by: rrvsum 32421 |
Copyright terms: Public domain | W3C validator |