Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvadd Structured version   Visualization version   GIF version

Theorem rrvadd 30854
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
rrvadd.1 (𝜑𝑃 ∈ Prob)
rrvadd.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
rrvadd.3 (𝜑𝑌 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvadd (𝜑 → (𝑋𝑓 + 𝑌) ∈ (rRndVar‘𝑃))

Proof of Theorem rrvadd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 4881 . . . 4 𝑎(𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)
2 rrvadd.1 . . . . 5 (𝜑𝑃 ∈ Prob)
3 rrvadd.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 30846 . . . 4 (𝜑𝑋: dom 𝑃⟶ℝ)
5 rrvadd.3 . . . . 5 (𝜑𝑌 ∈ (rRndVar‘𝑃))
62, 5rrvvf 30846 . . . 4 (𝜑𝑌: dom 𝑃⟶ℝ)
72unveldomd 30817 . . . 4 (𝜑 dom 𝑃 ∈ dom 𝑃)
8 eqidd 2772 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩))
9 eqidd 2772 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)))
101, 4, 6, 7, 8, 9ofoprabco 29804 . . 3 (𝜑 → (𝑋𝑓 + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)))
11 domprobsiga 30813 . . . . 5 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
122, 11syl 17 . . . 4 (𝜑 → dom 𝑃 ran sigAlgebra)
13 brsigarn 30587 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
14 elrnsiga 30529 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1513, 14mp1i 13 . . . . 5 (𝜑 → 𝔅 ran sigAlgebra)
16 sxsiga 30594 . . . . 5 ((𝔅 ran sigAlgebra ∧ 𝔅 ran sigAlgebra) → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
1715, 15, 16syl2anc 573 . . . 4 (𝜑 → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
182rrvmbfm 30844 . . . . . 6 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
193, 18mpbid 222 . . . . 5 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
202rrvmbfm 30844 . . . . . 6 (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅)))
215, 20mpbid 222 . . . . 5 (𝜑𝑌 ∈ (dom 𝑃MblFnM𝔅))
22 fveq2 6332 . . . . . . 7 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
23 fveq2 6332 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
2422, 23opeq12d 4547 . . . . . 6 (𝑎 = 𝑏 → ⟨(𝑋𝑎), (𝑌𝑎)⟩ = ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2524cbvmptv 4884 . . . . 5 (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑏 dom 𝑃 ↦ ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2612, 15, 15, 19, 21, 25mbfmco2 30667 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) ∈ (dom 𝑃MblFnM(𝔅 ×s 𝔅)))
27 eqid 2771 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
2827raddcn 30315 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))
2928a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))))
3027sxbrsiga 30692 . . . . . 6 (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))
3130a1i 11 . . . . 5 (𝜑 → (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))))
32 df-brsiga 30585 . . . . . 6 𝔅 = (sigaGen‘(topGen‘ran (,)))
3332a1i 11 . . . . 5 (𝜑 → 𝔅 = (sigaGen‘(topGen‘ran (,))))
3429, 31, 33cnmbfm 30665 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅 ×s 𝔅)MblFnM𝔅))
3512, 17, 15, 26, 34mbfmco 30666 . . 3 (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)) ∈ (dom 𝑃MblFnM𝔅))
3610, 35eqeltrd 2850 . 2 (𝜑 → (𝑋𝑓 + 𝑌) ∈ (dom 𝑃MblFnM𝔅))
372rrvmbfm 30844 . 2 (𝜑 → ((𝑋𝑓 + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋𝑓 + 𝑌) ∈ (dom 𝑃MblFnM𝔅)))
3836, 37mpbird 247 1 (𝜑 → (𝑋𝑓 + 𝑌) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  cop 4322   cuni 4574  cmpt 4863  dom cdm 5249  ran crn 5250  ccom 5253  cfv 6031  (class class class)co 6793  cmpt2 6795  𝑓 cof 7042  cr 10137   + caddc 10141  (,)cioo 12380  topGenctg 16306   Cn ccn 21249   ×t ctx 21584  sigAlgebracsiga 30510  sigaGencsigagen 30541  𝔅cbrsiga 30584   ×s csx 30591  MblFnMcmbfm 30652  Probcprb 30809  rRndVarcrrv 30842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-ac2 9487  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-ac 9139  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-refld 20168  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-fcls 21965  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-cfil 23272  df-cmet 23274  df-cms 23351  df-limc 23850  df-dv 23851  df-log 24524  df-cxp 24525  df-logb 24724  df-esum 30430  df-siga 30511  df-sigagen 30542  df-brsiga 30585  df-sx 30592  df-meas 30599  df-mbfm 30653  df-prob 30810  df-rrv 30843
This theorem is referenced by:  rrvsum  30856
  Copyright terms: Public domain W3C validator