Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvadd Structured version   Visualization version   GIF version

Theorem rrvadd 33052
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
rrvadd.1 (𝜑𝑃 ∈ Prob)
rrvadd.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
rrvadd.3 (𝜑𝑌 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvadd (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))

Proof of Theorem rrvadd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5213 . . . 4 𝑎(𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)
2 rrvadd.1 . . . . 5 (𝜑𝑃 ∈ Prob)
3 rrvadd.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 33044 . . . 4 (𝜑𝑋: dom 𝑃⟶ℝ)
5 rrvadd.3 . . . . 5 (𝜑𝑌 ∈ (rRndVar‘𝑃))
62, 5rrvvf 33044 . . . 4 (𝜑𝑌: dom 𝑃⟶ℝ)
72unveldomd 33015 . . . 4 (𝜑 dom 𝑃 ∈ dom 𝑃)
8 eqidd 2737 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩))
9 eqidd 2737 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)))
101, 4, 6, 7, 8, 9ofoprabco 31580 . . 3 (𝜑 → (𝑋f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)))
11 domprobsiga 33011 . . . . 5 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
122, 11syl 17 . . . 4 (𝜑 → dom 𝑃 ran sigAlgebra)
13 brsigarn 32783 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
14 elrnsiga 32725 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1513, 14mp1i 13 . . . . 5 (𝜑 → 𝔅 ran sigAlgebra)
16 sxsiga 32790 . . . . 5 ((𝔅 ran sigAlgebra ∧ 𝔅 ran sigAlgebra) → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
1715, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
182rrvmbfm 33042 . . . . . 6 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
193, 18mpbid 231 . . . . 5 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
202rrvmbfm 33042 . . . . . 6 (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅)))
215, 20mpbid 231 . . . . 5 (𝜑𝑌 ∈ (dom 𝑃MblFnM𝔅))
22 fveq2 6842 . . . . . . 7 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
23 fveq2 6842 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
2422, 23opeq12d 4838 . . . . . 6 (𝑎 = 𝑏 → ⟨(𝑋𝑎), (𝑌𝑎)⟩ = ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2524cbvmptv 5218 . . . . 5 (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑏 dom 𝑃 ↦ ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2612, 15, 15, 19, 21, 25mbfmco2 32865 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) ∈ (dom 𝑃MblFnM(𝔅 ×s 𝔅)))
27 eqid 2736 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
2827raddcn 32510 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))
2928a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))))
3027sxbrsiga 32890 . . . . . 6 (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))
3130a1i 11 . . . . 5 (𝜑 → (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))))
32 df-brsiga 32781 . . . . . 6 𝔅 = (sigaGen‘(topGen‘ran (,)))
3332a1i 11 . . . . 5 (𝜑 → 𝔅 = (sigaGen‘(topGen‘ran (,))))
3429, 31, 33cnmbfm 32863 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅 ×s 𝔅)MblFnM𝔅))
3512, 17, 15, 26, 34mbfmco 32864 . . 3 (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)) ∈ (dom 𝑃MblFnM𝔅))
3610, 35eqeltrd 2838 . 2 (𝜑 → (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅))
372rrvmbfm 33042 . 2 (𝜑 → ((𝑋f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅)))
3836, 37mpbird 256 1 (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cop 4592   cuni 4865  cmpt 5188  dom cdm 5633  ran crn 5634  ccom 5637  cfv 6496  (class class class)co 7357  cmpo 7359  f cof 7615  cr 11050   + caddc 11054  (,)cioo 13264  topGenctg 17319   Cn ccn 22575   ×t ctx 22911  sigAlgebracsiga 32707  sigaGencsigagen 32737  𝔅cbrsiga 32780   ×s csx 32787  MblFnMcmbfm 32848  Probcprb 33007  rRndVarcrrv 33040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-refld 21009  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-fcls 23292  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-cfil 24619  df-cmet 24621  df-cms 24699  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115  df-esum 32627  df-siga 32708  df-sigagen 32738  df-brsiga 32781  df-sx 32788  df-meas 32795  df-mbfm 32849  df-prob 33008  df-rrv 33041
This theorem is referenced by:  rrvsum  33054
  Copyright terms: Public domain W3C validator