Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrvadd Structured version   Visualization version   GIF version

Theorem rrvadd 34489
Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
rrvadd.1 (𝜑𝑃 ∈ Prob)
rrvadd.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
rrvadd.3 (𝜑𝑌 ∈ (rRndVar‘𝑃))
Assertion
Ref Expression
rrvadd (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))

Proof of Theorem rrvadd
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5225 . . . 4 𝑎(𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)
2 rrvadd.1 . . . . 5 (𝜑𝑃 ∈ Prob)
3 rrvadd.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
42, 3rrvvf 34481 . . . 4 (𝜑𝑋: dom 𝑃⟶ℝ)
5 rrvadd.3 . . . . 5 (𝜑𝑌 ∈ (rRndVar‘𝑃))
62, 5rrvvf 34481 . . . 4 (𝜑𝑌: dom 𝑃⟶ℝ)
72unveldomd 34452 . . . 4 (𝜑 dom 𝑃 ∈ dom 𝑃)
8 eqidd 2737 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩))
9 eqidd 2737 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)))
101, 4, 6, 7, 8, 9ofoprabco 32647 . . 3 (𝜑 → (𝑋f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)))
11 domprobsiga 34448 . . . . 5 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
122, 11syl 17 . . . 4 (𝜑 → dom 𝑃 ran sigAlgebra)
13 brsigarn 34220 . . . . . 6 𝔅 ∈ (sigAlgebra‘ℝ)
14 elrnsiga 34162 . . . . . 6 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1513, 14mp1i 13 . . . . 5 (𝜑 → 𝔅 ran sigAlgebra)
16 sxsiga 34227 . . . . 5 ((𝔅 ran sigAlgebra ∧ 𝔅 ran sigAlgebra) → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
1715, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝔅 ×s 𝔅) ∈ ran sigAlgebra)
182rrvmbfm 34479 . . . . . 6 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
193, 18mpbid 232 . . . . 5 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
202rrvmbfm 34479 . . . . . 6 (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅)))
215, 20mpbid 232 . . . . 5 (𝜑𝑌 ∈ (dom 𝑃MblFnM𝔅))
22 fveq2 6881 . . . . . . 7 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
23 fveq2 6881 . . . . . . 7 (𝑎 = 𝑏 → (𝑌𝑎) = (𝑌𝑏))
2422, 23opeq12d 4862 . . . . . 6 (𝑎 = 𝑏 → ⟨(𝑋𝑎), (𝑌𝑎)⟩ = ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2524cbvmptv 5230 . . . . 5 (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) = (𝑏 dom 𝑃 ↦ ⟨(𝑋𝑏), (𝑌𝑏)⟩)
2612, 15, 15, 19, 21, 25mbfmco2 34302 . . . 4 (𝜑 → (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩) ∈ (dom 𝑃MblFnM(𝔅 ×s 𝔅)))
27 eqid 2736 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
2827raddcn 33965 . . . . . 6 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))
2928a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))))
3027sxbrsiga 34327 . . . . . 6 (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))
3130a1i 11 . . . . 5 (𝜑 → (𝔅 ×s 𝔅) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))))
32 df-brsiga 34218 . . . . . 6 𝔅 = (sigaGen‘(topGen‘ran (,)))
3332a1i 11 . . . . 5 (𝜑 → 𝔅 = (sigaGen‘(topGen‘ran (,))))
3429, 31, 33cnmbfm 34300 . . . 4 (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅 ×s 𝔅)MblFnM𝔅))
3512, 17, 15, 26, 34mbfmco 34301 . . 3 (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 dom 𝑃 ↦ ⟨(𝑋𝑎), (𝑌𝑎)⟩)) ∈ (dom 𝑃MblFnM𝔅))
3610, 35eqeltrd 2835 . 2 (𝜑 → (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅))
372rrvmbfm 34479 . 2 (𝜑 → ((𝑋f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋f + 𝑌) ∈ (dom 𝑃MblFnM𝔅)))
3836, 37mpbird 257 1 (𝜑 → (𝑋f + 𝑌) ∈ (rRndVar‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4612   cuni 4888  cmpt 5206  dom cdm 5659  ran crn 5660  ccom 5663  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674  cr 11133   + caddc 11137  (,)cioo 13367  topGenctg 17456   Cn ccn 23167   ×t ctx 23503  sigAlgebracsiga 34144  sigaGencsigagen 34174  𝔅cbrsiga 34217   ×s csx 34224  MblFnMcmbfm 34285  Probcprb 34444  rRndVarcrrv 34477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-refld 21570  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-fcls 23884  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-cfil 25212  df-cmet 25214  df-cms 25292  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-logb 26732  df-esum 34064  df-siga 34145  df-sigagen 34175  df-brsiga 34218  df-sx 34225  df-meas 34232  df-mbfm 34286  df-prob 34445  df-rrv 34478
This theorem is referenced by:  rrvsum  34491
  Copyright terms: Public domain W3C validator