| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrvadd | Structured version Visualization version GIF version | ||
| Description: The sum of two random variables is a random variable. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| rrvadd.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| rrvadd.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| rrvadd.3 | ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) |
| Ref | Expression |
|---|---|
| rrvadd | ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfmpt1 5225 | . . . 4 ⊢ Ⅎ𝑎(𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) | |
| 2 | rrvadd.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 3 | rrvadd.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 4 | 2, 3 | rrvvf 34481 | . . . 4 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
| 5 | rrvadd.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (rRndVar‘𝑃)) | |
| 6 | 2, 5 | rrvvf 34481 | . . . 4 ⊢ (𝜑 → 𝑌:∪ dom 𝑃⟶ℝ) |
| 7 | 2 | unveldomd 34452 | . . . 4 ⊢ (𝜑 → ∪ dom 𝑃 ∈ dom 𝑃) |
| 8 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) | |
| 9 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))) | |
| 10 | 1, 4, 6, 7, 8, 9 | ofoprabco 32647 | . . 3 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉))) |
| 11 | domprobsiga 34448 | . . . . 5 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 12 | 2, 11 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 13 | brsigarn 34220 | . . . . . 6 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 14 | elrnsiga 34162 | . . . . . 6 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 15 | 13, 14 | mp1i 13 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 16 | sxsiga 34227 | . . . . 5 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ 𝔅ℝ ∈ ∪ ran sigAlgebra) → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) | |
| 17 | 15, 15, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) ∈ ∪ ran sigAlgebra) |
| 18 | 2 | rrvmbfm 34479 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 19 | 3, 18 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 20 | 2 | rrvmbfm 34479 | . . . . . 6 ⊢ (𝜑 → (𝑌 ∈ (rRndVar‘𝑃) ↔ 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 21 | 5, 20 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 22 | fveq2 6881 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑋‘𝑎) = (𝑋‘𝑏)) | |
| 23 | fveq2 6881 | . . . . . . 7 ⊢ (𝑎 = 𝑏 → (𝑌‘𝑎) = (𝑌‘𝑏)) | |
| 24 | 22, 23 | opeq12d 4862 | . . . . . 6 ⊢ (𝑎 = 𝑏 → 〈(𝑋‘𝑎), (𝑌‘𝑎)〉 = 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
| 25 | 24 | cbvmptv 5230 | . . . . 5 ⊢ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) = (𝑏 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑏), (𝑌‘𝑏)〉) |
| 26 | 12, 15, 15, 19, 21, 25 | mbfmco2 34302 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉) ∈ (dom 𝑃MblFnM(𝔅ℝ ×s 𝔅ℝ))) |
| 27 | eqid 2736 | . . . . . . 7 ⊢ (topGen‘ran (,)) = (topGen‘ran (,)) | |
| 28 | 27 | raddcn 33965 | . . . . . 6 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,))) |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ (((topGen‘ran (,)) ×t (topGen‘ran (,))) Cn (topGen‘ran (,)))) |
| 30 | 27 | sxbrsiga 34327 | . . . . . 6 ⊢ (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,)))) |
| 31 | 30 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝔅ℝ ×s 𝔅ℝ) = (sigaGen‘((topGen‘ran (,)) ×t (topGen‘ran (,))))) |
| 32 | df-brsiga 34218 | . . . . . 6 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝔅ℝ = (sigaGen‘(topGen‘ran (,)))) |
| 34 | 29, 31, 33 | cnmbfm 34300 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝔅ℝ ×s 𝔅ℝ)MblFnM𝔅ℝ)) |
| 35 | 12, 17, 15, 26, 34 | mbfmco 34301 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∘ (𝑎 ∈ ∪ dom 𝑃 ↦ 〈(𝑋‘𝑎), (𝑌‘𝑎)〉)) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 36 | 10, 35 | eqeltrd 2835 | . 2 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 37 | 2 | rrvmbfm 34479 | . 2 ⊢ (𝜑 → ((𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃) ↔ (𝑋 ∘f + 𝑌) ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 38 | 36, 37 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋 ∘f + 𝑌) ∈ (rRndVar‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4612 ∪ cuni 4888 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ∘f cof 7674 ℝcr 11133 + caddc 11137 (,)cioo 13367 topGenctg 17456 Cn ccn 23167 ×t ctx 23503 sigAlgebracsiga 34144 sigaGencsigagen 34174 𝔅ℝcbrsiga 34217 ×s csx 34224 MblFnMcmbfm 34285 Probcprb 34444 rRndVarcrrv 34477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-refld 21570 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-fcls 23884 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-cfil 25212 df-cmet 25214 df-cms 25292 df-limc 25824 df-dv 25825 df-log 26522 df-cxp 26523 df-logb 26732 df-esum 34064 df-siga 34145 df-sigagen 34175 df-brsiga 34218 df-sx 34225 df-meas 34232 df-mbfm 34286 df-prob 34445 df-rrv 34478 |
| This theorem is referenced by: rrvsum 34491 |
| Copyright terms: Public domain | W3C validator |