Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsiga Structured version   Visualization version   GIF version

Theorem sxbrsiga 31998
Description: The product sigma-algebra (𝔅 ×s 𝔅) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsiga (𝔅 ×s 𝔅) = (sigaGen‘(𝐽 ×t 𝐽))

Proof of Theorem sxbrsiga
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsigarn 31893 . . . 4 𝔅 ∈ (sigAlgebra‘ℝ)
2 eqid 2739 . . . . 5 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
32sxval 31899 . . . 4 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
41, 1, 3mp2an 692 . . 3 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
5 br2base 31977 . . . . 5 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
6 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
76tpr2uni 31598 . . . . 5 (𝐽 ×t 𝐽) = (ℝ × ℝ)
85, 7eqtr4i 2770 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝐽 ×t 𝐽)
9 brsigasspwrn 31894 . . . . . . . . . 10 𝔅 ⊆ 𝒫 ℝ
109sseli 3912 . . . . . . . . 9 (𝑒 ∈ 𝔅𝑒 ∈ 𝒫 ℝ)
1110elpwid 4540 . . . . . . . 8 (𝑒 ∈ 𝔅𝑒 ⊆ ℝ)
129sseli 3912 . . . . . . . . 9 (𝑓 ∈ 𝔅𝑓 ∈ 𝒫 ℝ)
1312elpwid 4540 . . . . . . . 8 (𝑓 ∈ 𝔅𝑓 ⊆ ℝ)
14 xpinpreima2 31600 . . . . . . . 8 ((𝑒 ⊆ ℝ ∧ 𝑓 ⊆ ℝ) → (𝑒 × 𝑓) = (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)))
1511, 13, 14syl2an 599 . . . . . . 7 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (𝑒 × 𝑓) = (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)))
166tpr2tp 31597 . . . . . . . . . 10 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
17 sigagensiga 31850 . . . . . . . . . 10 ((𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽)))
1816, 17ax-mp 5 . . . . . . . . 9 (sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽))
19 elrnsiga 31835 . . . . . . . . 9 ((sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽)) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
2018, 19mp1i 13 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
2116a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
2221sgsiga 31851 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
23 elrnsiga 31835 . . . . . . . . . . 11 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
241, 23mp1i 13 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → 𝔅 ran sigAlgebra)
25 retopon 23690 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
266, 25eqeltri 2836 . . . . . . . . . . . . 13 𝐽 ∈ (TopOn‘ℝ)
27 tx1cn 22535 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2826, 26, 27mp2an 692 . . . . . . . . . . . 12 (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2928a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
30 eqidd 2740 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘(𝐽 ×t 𝐽)))
31 df-brsiga 31891 . . . . . . . . . . . . 13 𝔅 = (sigaGen‘(topGen‘ran (,)))
326fveq2i 6741 . . . . . . . . . . . . 13 (sigaGen‘𝐽) = (sigaGen‘(topGen‘ran (,)))
3331, 32eqtr4i 2770 . . . . . . . . . . . 12 𝔅 = (sigaGen‘𝐽)
3433a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → 𝔅 = (sigaGen‘𝐽))
3529, 30, 34cnmbfm 31971 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → (1st ↾ (ℝ × ℝ)) ∈ ((sigaGen‘(𝐽 ×t 𝐽))MblFnM𝔅))
36 id 22 . . . . . . . . . 10 (𝑒 ∈ 𝔅𝑒 ∈ 𝔅)
3722, 24, 35, 36mbfmcnvima 31965 . . . . . . . . 9 (𝑒 ∈ 𝔅 → ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
3837adantr 484 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
3916a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
4039sgsiga 31851 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
411, 23mp1i 13 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → 𝔅 ran sigAlgebra)
42 tx2cn 22536 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4326, 26, 42mp2an 692 . . . . . . . . . . . 12 (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4443a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45 eqidd 2740 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘(𝐽 ×t 𝐽)))
4633a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → 𝔅 = (sigaGen‘𝐽))
4744, 45, 46cnmbfm 31971 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → (2nd ↾ (ℝ × ℝ)) ∈ ((sigaGen‘(𝐽 ×t 𝐽))MblFnM𝔅))
48 id 22 . . . . . . . . . 10 (𝑓 ∈ 𝔅𝑓 ∈ 𝔅)
4940, 41, 47, 48mbfmcnvima 31965 . . . . . . . . 9 (𝑓 ∈ 𝔅 → ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5049adantl 485 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
51 inelsiga 31844 . . . . . . . 8 (((sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽))) → (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5220, 38, 50, 51syl3anc 1373 . . . . . . 7 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5315, 52eqeltrd 2840 . . . . . 6 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5453rgen2 3126 . . . . 5 𝑒 ∈ 𝔅𝑓 ∈ 𝔅 (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽))
55 eqid 2739 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
5655rnmposs 30760 . . . . 5 (∀𝑒 ∈ 𝔅𝑓 ∈ 𝔅 (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)) → ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)))
5754, 56ax-mp 5 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
58 sigagenss2 31859 . . . 4 (( ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝐽 ×t 𝐽) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) ∧ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))) → (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ⊆ (sigaGen‘(𝐽 ×t 𝐽)))
598, 57, 16, 58mp3an 1463 . . 3 (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
604, 59eqsstri 3951 . 2 (𝔅 ×s 𝔅) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
616sxbrsigalem6 31997 . 2 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
6260, 61eqssi 3933 1 (𝔅 ×s 𝔅) = (sigaGen‘(𝐽 ×t 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2112  wral 3063  cin 3881  wss 3882  𝒫 cpw 4529   cuni 4835   × cxp 5566  ccnv 5567  ran crn 5569  cres 5570  cima 5571  cfv 6400  (class class class)co 7234  cmpo 7236  1st c1st 7780  2nd c2nd 7781  cr 10755  (,)cioo 12962  topGenctg 16972  TopOnctopon 21836   Cn ccn 22150   ×t ctx 22486  sigAlgebracsiga 31817  sigaGencsigagen 31847  𝔅cbrsiga 31890   ×s csx 31897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-inf2 9283  ax-ac2 10104  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833  ax-pre-sup 10834  ax-addf 10835  ax-mulf 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-int 4876  df-iun 4922  df-iin 4923  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-se 5527  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-isom 6409  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-of 7490  df-om 7666  df-1st 7782  df-2nd 7783  df-supp 7927  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-2o 8226  df-oadd 8229  df-omul 8230  df-er 8414  df-map 8533  df-pm 8534  df-ixp 8602  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-fsupp 9013  df-fi 9054  df-sup 9085  df-inf 9086  df-oi 9153  df-dju 9544  df-card 9582  df-acn 9585  df-ac 9757  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-div 11517  df-nn 11858  df-2 11920  df-3 11921  df-4 11922  df-5 11923  df-6 11924  df-7 11925  df-8 11926  df-9 11927  df-n0 12118  df-z 12204  df-dec 12321  df-uz 12466  df-q 12572  df-rp 12614  df-xneg 12731  df-xadd 12732  df-xmul 12733  df-ioo 12966  df-ioc 12967  df-ico 12968  df-icc 12969  df-fz 13123  df-fzo 13266  df-fl 13394  df-mod 13472  df-seq 13604  df-exp 13665  df-fac 13870  df-bc 13899  df-hash 13927  df-shft 14660  df-cj 14692  df-re 14693  df-im 14694  df-sqrt 14828  df-abs 14829  df-limsup 15062  df-clim 15079  df-rlim 15080  df-sum 15280  df-ef 15659  df-sin 15661  df-cos 15662  df-pi 15664  df-struct 16730  df-sets 16747  df-slot 16765  df-ndx 16775  df-base 16791  df-ress 16815  df-plusg 16845  df-mulr 16846  df-starv 16847  df-sca 16848  df-vsca 16849  df-ip 16850  df-tset 16851  df-ple 16852  df-ds 16854  df-unif 16855  df-hom 16856  df-cco 16857  df-rest 16957  df-topn 16958  df-0g 16976  df-gsum 16977  df-topgen 16978  df-pt 16979  df-prds 16982  df-xrs 17037  df-qtop 17042  df-imas 17043  df-xps 17045  df-mre 17119  df-mrc 17120  df-acs 17122  df-mgm 18144  df-sgrp 18193  df-mnd 18204  df-submnd 18249  df-mulg 18519  df-cntz 18741  df-cmn 19202  df-psmet 20385  df-xmet 20386  df-met 20387  df-bl 20388  df-mopn 20389  df-fbas 20390  df-fg 20391  df-cnfld 20394  df-refld 20597  df-top 21820  df-topon 21837  df-topsp 21859  df-bases 21872  df-cld 21945  df-ntr 21946  df-cls 21947  df-nei 22024  df-lp 22062  df-perf 22063  df-cn 22153  df-cnp 22154  df-haus 22241  df-cmp 22313  df-tx 22488  df-hmeo 22681  df-fil 22772  df-fm 22864  df-flim 22865  df-flf 22866  df-fcls 22867  df-xms 23247  df-ms 23248  df-tms 23249  df-cncf 23804  df-cfil 24181  df-cmet 24183  df-cms 24261  df-limc 24792  df-dv 24793  df-log 25474  df-cxp 25475  df-logb 25677  df-siga 31818  df-sigagen 31848  df-brsiga 31891  df-sx 31898  df-mbfm 31959
This theorem is referenced by:  rrvadd  32160
  Copyright terms: Public domain W3C validator