Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxbrsiga Structured version   Visualization version   GIF version

Theorem sxbrsiga 33227
Description: The product sigma-algebra (𝔅 ×s 𝔅) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.)
Hypothesis
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
sxbrsiga (𝔅 ×s 𝔅) = (sigaGen‘(𝐽 ×t 𝐽))

Proof of Theorem sxbrsiga
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsigarn 33120 . . . 4 𝔅 ∈ (sigAlgebra‘ℝ)
2 eqid 2733 . . . . 5 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
32sxval 33126 . . . 4 ((𝔅 ∈ (sigAlgebra‘ℝ) ∧ 𝔅 ∈ (sigAlgebra‘ℝ)) → (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))))
41, 1, 3mp2an 691 . . 3 (𝔅 ×s 𝔅) = (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)))
5 br2base 33206 . . . . 5 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (ℝ × ℝ)
6 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
76tpr2uni 32823 . . . . 5 (𝐽 ×t 𝐽) = (ℝ × ℝ)
85, 7eqtr4i 2764 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝐽 ×t 𝐽)
9 brsigasspwrn 33121 . . . . . . . . . 10 𝔅 ⊆ 𝒫 ℝ
109sseli 3977 . . . . . . . . 9 (𝑒 ∈ 𝔅𝑒 ∈ 𝒫 ℝ)
1110elpwid 4610 . . . . . . . 8 (𝑒 ∈ 𝔅𝑒 ⊆ ℝ)
129sseli 3977 . . . . . . . . 9 (𝑓 ∈ 𝔅𝑓 ∈ 𝒫 ℝ)
1312elpwid 4610 . . . . . . . 8 (𝑓 ∈ 𝔅𝑓 ⊆ ℝ)
14 xpinpreima2 32825 . . . . . . . 8 ((𝑒 ⊆ ℝ ∧ 𝑓 ⊆ ℝ) → (𝑒 × 𝑓) = (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)))
1511, 13, 14syl2an 597 . . . . . . 7 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (𝑒 × 𝑓) = (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)))
166tpr2tp 32822 . . . . . . . . . 10 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))
17 sigagensiga 33077 . . . . . . . . . 10 ((𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽)))
1816, 17ax-mp 5 . . . . . . . . 9 (sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽))
19 elrnsiga 33062 . . . . . . . . 9 ((sigaGen‘(𝐽 ×t 𝐽)) ∈ (sigAlgebra‘ (𝐽 ×t 𝐽)) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
2018, 19mp1i 13 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
2116a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
2221sgsiga 33078 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
23 elrnsiga 33062 . . . . . . . . . . 11 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
241, 23mp1i 13 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → 𝔅 ran sigAlgebra)
25 retopon 24262 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
266, 25eqeltri 2830 . . . . . . . . . . . . 13 𝐽 ∈ (TopOn‘ℝ)
27 tx1cn 23095 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2826, 26, 27mp2an 691 . . . . . . . . . . . 12 (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2928a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (1st ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
30 eqidd 2734 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘(𝐽 ×t 𝐽)))
31 df-brsiga 33118 . . . . . . . . . . . . 13 𝔅 = (sigaGen‘(topGen‘ran (,)))
326fveq2i 6891 . . . . . . . . . . . . 13 (sigaGen‘𝐽) = (sigaGen‘(topGen‘ran (,)))
3331, 32eqtr4i 2764 . . . . . . . . . . . 12 𝔅 = (sigaGen‘𝐽)
3433a1i 11 . . . . . . . . . . 11 (𝑒 ∈ 𝔅 → 𝔅 = (sigaGen‘𝐽))
3529, 30, 34cnmbfm 33200 . . . . . . . . . 10 (𝑒 ∈ 𝔅 → (1st ↾ (ℝ × ℝ)) ∈ ((sigaGen‘(𝐽 ×t 𝐽))MblFnM𝔅))
36 id 22 . . . . . . . . . 10 (𝑒 ∈ 𝔅𝑒 ∈ 𝔅)
3722, 24, 35, 36mbfmcnvima 33192 . . . . . . . . 9 (𝑒 ∈ 𝔅 → ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
3837adantr 482 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
3916a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)))
4039sgsiga 33078 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra)
411, 23mp1i 13 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → 𝔅 ran sigAlgebra)
42 tx2cn 23096 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℝ) ∧ 𝐽 ∈ (TopOn‘ℝ)) → (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4326, 26, 42mp2an 691 . . . . . . . . . . . 12 (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4443a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (2nd ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
45 eqidd 2734 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘(𝐽 ×t 𝐽)))
4633a1i 11 . . . . . . . . . . 11 (𝑓 ∈ 𝔅 → 𝔅 = (sigaGen‘𝐽))
4744, 45, 46cnmbfm 33200 . . . . . . . . . 10 (𝑓 ∈ 𝔅 → (2nd ↾ (ℝ × ℝ)) ∈ ((sigaGen‘(𝐽 ×t 𝐽))MblFnM𝔅))
48 id 22 . . . . . . . . . 10 (𝑓 ∈ 𝔅𝑓 ∈ 𝔅)
4940, 41, 47, 48mbfmcnvima 33192 . . . . . . . . 9 (𝑓 ∈ 𝔅 → ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5049adantl 483 . . . . . . . 8 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
51 inelsiga 33071 . . . . . . . 8 (((sigaGen‘(𝐽 ×t 𝐽)) ∈ ran sigAlgebra ∧ ((1st ↾ (ℝ × ℝ)) “ 𝑒) ∈ (sigaGen‘(𝐽 ×t 𝐽)) ∧ ((2nd ↾ (ℝ × ℝ)) “ 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽))) → (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5220, 38, 50, 51syl3anc 1372 . . . . . . 7 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (((1st ↾ (ℝ × ℝ)) “ 𝑒) ∩ ((2nd ↾ (ℝ × ℝ)) “ 𝑓)) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5315, 52eqeltrd 2834 . . . . . 6 ((𝑒 ∈ 𝔅𝑓 ∈ 𝔅) → (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)))
5453rgen2 3198 . . . . 5 𝑒 ∈ 𝔅𝑓 ∈ 𝔅 (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽))
55 eqid 2733 . . . . . 6 (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))
5655rnmposs 31877 . . . . 5 (∀𝑒 ∈ 𝔅𝑓 ∈ 𝔅 (𝑒 × 𝑓) ∈ (sigaGen‘(𝐽 ×t 𝐽)) → ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)))
5754, 56ax-mp 5 . . . 4 ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
58 sigagenss2 33086 . . . 4 (( ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) = (𝐽 ×t 𝐽) ∧ ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓)) ⊆ (sigaGen‘(𝐽 ×t 𝐽)) ∧ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ))) → (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ⊆ (sigaGen‘(𝐽 ×t 𝐽)))
598, 57, 16, 58mp3an 1462 . . 3 (sigaGen‘ran (𝑒 ∈ 𝔅, 𝑓 ∈ 𝔅 ↦ (𝑒 × 𝑓))) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
604, 59eqsstri 4015 . 2 (𝔅 ×s 𝔅) ⊆ (sigaGen‘(𝐽 ×t 𝐽))
616sxbrsigalem6 33226 . 2 (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
6260, 61eqssi 3997 1 (𝔅 ×s 𝔅) = (sigaGen‘(𝐽 ×t 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  wral 3062  cin 3946  wss 3947  𝒫 cpw 4601   cuni 4907   × cxp 5673  ccnv 5674  ran crn 5676  cres 5677  cima 5678  cfv 6540  (class class class)co 7404  cmpo 7406  1st c1st 7968  2nd c2nd 7969  cr 11105  (,)cioo 13320  topGenctg 17379  TopOnctopon 22394   Cn ccn 22710   ×t ctx 23046  sigAlgebracsiga 33044  sigaGencsigagen 33074  𝔅cbrsiga 33117   ×s csx 33124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-ac2 10454  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-acn 9933  df-ac 10107  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-mulg 18945  df-cntz 19175  df-cmn 19643  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-refld 21142  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-lp 22622  df-perf 22623  df-cn 22713  df-cnp 22714  df-haus 22801  df-cmp 22873  df-tx 23048  df-hmeo 23241  df-fil 23332  df-fm 23424  df-flim 23425  df-flf 23426  df-fcls 23427  df-xms 23808  df-ms 23809  df-tms 23810  df-cncf 24376  df-cfil 24754  df-cmet 24756  df-cms 24834  df-limc 25365  df-dv 25366  df-log 26047  df-cxp 26048  df-logb 26250  df-siga 33045  df-sigagen 33075  df-brsiga 33118  df-sx 33125  df-mbfm 33186
This theorem is referenced by:  rrvadd  33389
  Copyright terms: Public domain W3C validator