Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unibrsiga Structured version   Visualization version   GIF version

Theorem unibrsiga 34199
Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
unibrsiga 𝔅 = ℝ

Proof of Theorem unibrsiga
StepHypRef Expression
1 retop 24676 . . 3 (topGen‘ran (,)) ∈ Top
2 unisg 34156 . . 3 ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) = (topGen‘ran (,)))
31, 2ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) = (topGen‘ran (,))
4 df-brsiga 34195 . . 3 𝔅 = (sigaGen‘(topGen‘ran (,)))
54unieqi 4868 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
6 uniretop 24677 . 2 ℝ = (topGen‘ran (,))
73, 5, 63eqtr4i 2764 1 𝔅 = ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   cuni 4856  ran crn 5615  cfv 6481  cr 11005  (,)cioo 13245  topGenctg 17341  Topctop 22808  sigaGencsigagen 34151  𝔅cbrsiga 34194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioo 13249  df-topgen 17347  df-top 22809  df-bases 22861  df-siga 34122  df-sigagen 34152  df-brsiga 34195
This theorem is referenced by:  elmbfmvol2  34280  mbfmcnt  34281  br2base  34282  isrrvv  34456  orvcelval  34482  dstrvprob  34485
  Copyright terms: Public domain W3C validator