Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unibrsiga Structured version   Visualization version   GIF version

Theorem unibrsiga 33179
Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
unibrsiga 𝔅 = ℝ

Proof of Theorem unibrsiga
StepHypRef Expression
1 retop 24277 . . 3 (topGen‘ran (,)) ∈ Top
2 unisg 33136 . . 3 ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) = (topGen‘ran (,)))
31, 2ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) = (topGen‘ran (,))
4 df-brsiga 33175 . . 3 𝔅 = (sigaGen‘(topGen‘ran (,)))
54unieqi 4921 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
6 uniretop 24278 . 2 ℝ = (topGen‘ran (,))
73, 5, 63eqtr4i 2770 1 𝔅 = ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106   cuni 4908  ran crn 5677  cfv 6543  cr 11108  (,)cioo 13323  topGenctg 17382  Topctop 22394  sigaGencsigagen 33131  𝔅cbrsiga 33174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioo 13327  df-topgen 17388  df-top 22395  df-bases 22448  df-siga 33102  df-sigagen 33132  df-brsiga 33175
This theorem is referenced by:  elmbfmvol2  33261  mbfmcnt  33262  br2base  33263  isrrvv  33437  orvcelval  33462  dstrvprob  33465
  Copyright terms: Public domain W3C validator