| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unibrsiga | Structured version Visualization version GIF version | ||
| Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| unibrsiga | ⊢ ∪ 𝔅ℝ = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retop 24649 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 2 | unisg 34133 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,)) |
| 4 | df-brsiga 34172 | . . 3 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 5 | 4 | unieqi 4883 | . 2 ⊢ ∪ 𝔅ℝ = ∪ (sigaGen‘(topGen‘ran (,))) |
| 6 | uniretop 24650 | . 2 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 7 | 3, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝔅ℝ = ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 ℝcr 11067 (,)cioo 13306 topGenctg 17400 Topctop 22780 sigaGencsigagen 34128 𝔅ℝcbrsiga 34171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-bases 22833 df-siga 34099 df-sigagen 34129 df-brsiga 34172 |
| This theorem is referenced by: elmbfmvol2 34258 mbfmcnt 34259 br2base 34260 isrrvv 34434 orvcelval 34460 dstrvprob 34463 |
| Copyright terms: Public domain | W3C validator |