![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unibrsiga | Structured version Visualization version GIF version |
Description: The union of the Borel Algebra is the set of real numbers. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
unibrsiga | ⊢ ∪ 𝔅ℝ = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 24277 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | unisg 33136 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ (sigaGen‘(topGen‘ran (,))) = ∪ (topGen‘ran (,)) |
4 | df-brsiga 33175 | . . 3 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
5 | 4 | unieqi 4921 | . 2 ⊢ ∪ 𝔅ℝ = ∪ (sigaGen‘(topGen‘ran (,))) |
6 | uniretop 24278 | . 2 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
7 | 3, 5, 6 | 3eqtr4i 2770 | 1 ⊢ ∪ 𝔅ℝ = ℝ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∪ cuni 4908 ran crn 5677 ‘cfv 6543 ℝcr 11108 (,)cioo 13323 topGenctg 17382 Topctop 22394 sigaGencsigagen 33131 𝔅ℝcbrsiga 33174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ioo 13327 df-topgen 17388 df-top 22395 df-bases 22448 df-siga 33102 df-sigagen 33132 df-brsiga 33175 |
This theorem is referenced by: elmbfmvol2 33261 mbfmcnt 33262 br2base 33263 isrrvv 33437 orvcelval 33462 dstrvprob 33465 |
Copyright terms: Public domain | W3C validator |