![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsigarn | Structured version Visualization version GIF version |
Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
brsigarn | ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6461 | . . 3 ⊢ (topGen‘ran (,)) ∈ V | |
2 | sigagensiga 30810 | . . 3 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) |
4 | df-brsiga 30851 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
5 | uniretop 22985 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
6 | 5 | fveq2i 6451 | . 2 ⊢ (sigAlgebra‘ℝ) = (sigAlgebra‘∪ (topGen‘ran (,))) |
7 | 3, 4, 6 | 3eltr4i 2872 | 1 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3398 ∪ cuni 4673 ran crn 5358 ‘cfv 6137 ℝcr 10273 (,)cioo 12492 topGenctg 16495 sigAlgebracsiga 30776 sigaGencsigagen 30807 𝔅ℝcbrsiga 30850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-pre-lttri 10348 ax-pre-lttrn 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-po 5276 df-so 5277 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-1st 7447 df-2nd 7448 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-ioo 12496 df-topgen 16501 df-bases 21169 df-siga 30777 df-sigagen 30808 df-brsiga 30851 |
This theorem is referenced by: brsigasspwrn 30854 mbfmvolf 30934 elmbfmvol2 30935 mbfmcnt 30936 br2base 30937 dya2iocbrsiga 30943 dya2icobrsiga 30944 sxbrsigalem5 30956 sxbrsiga 30958 isrrvv 31112 rrvadd 31121 rrvmulc 31122 dstrvprob 31140 |
Copyright terms: Public domain | W3C validator |