Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsigarn Structured version   Visualization version   GIF version

Theorem brsigarn 34218
Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
brsigarn 𝔅 ∈ (sigAlgebra‘ℝ)

Proof of Theorem brsigarn
StepHypRef Expression
1 fvex 6841 . . 3 (topGen‘ran (,)) ∈ V
2 sigagensiga 34175 . . 3 ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))))
31, 2ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,)))
4 df-brsiga 34216 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
5 uniretop 24678 . . 3 ℝ = (topGen‘ran (,))
65fveq2i 6831 . 2 (sigAlgebra‘ℝ) = (sigAlgebra‘ (topGen‘ran (,)))
73, 4, 63eltr4i 2846 1 𝔅 ∈ (sigAlgebra‘ℝ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437   cuni 4858  ran crn 5620  cfv 6486  cr 11012  (,)cioo 13247  topGenctg 17343  sigAlgebracsiga 34142  sigaGencsigagen 34172  𝔅cbrsiga 34215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ioo 13251  df-topgen 17349  df-bases 22862  df-siga 34143  df-sigagen 34173  df-brsiga 34216
This theorem is referenced by:  brsigasspwrn  34219  mbfmvolf  34300  elmbfmvol2  34301  mbfmcnt  34302  br2base  34303  dya2iocbrsiga  34309  dya2icobrsiga  34310  sxbrsigalem5  34322  sxbrsiga  34324  isrrvv  34477  rrvadd  34486  rrvmulc  34487  dstrvprob  34506
  Copyright terms: Public domain W3C validator