| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsigarn | Structured version Visualization version GIF version | ||
| Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| brsigarn | ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6841 | . . 3 ⊢ (topGen‘ran (,)) ∈ V | |
| 2 | sigagensiga 34175 | . . 3 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) |
| 4 | df-brsiga 34216 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 5 | uniretop 24678 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 6 | 5 | fveq2i 6831 | . 2 ⊢ (sigAlgebra‘ℝ) = (sigAlgebra‘∪ (topGen‘ran (,))) |
| 7 | 3, 4, 6 | 3eltr4i 2846 | 1 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∪ cuni 4858 ran crn 5620 ‘cfv 6486 ℝcr 11012 (,)cioo 13247 topGenctg 17343 sigAlgebracsiga 34142 sigaGencsigagen 34172 𝔅ℝcbrsiga 34215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-topgen 17349 df-bases 22862 df-siga 34143 df-sigagen 34173 df-brsiga 34216 |
| This theorem is referenced by: brsigasspwrn 34219 mbfmvolf 34300 elmbfmvol2 34301 mbfmcnt 34302 br2base 34303 dya2iocbrsiga 34309 dya2icobrsiga 34310 sxbrsigalem5 34322 sxbrsiga 34324 isrrvv 34477 rrvadd 34486 rrvmulc 34487 dstrvprob 34506 |
| Copyright terms: Public domain | W3C validator |