Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsigarn | Structured version Visualization version GIF version |
Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
brsigarn | ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . 3 ⊢ (topGen‘ran (,)) ∈ V | |
2 | sigagensiga 32109 | . . 3 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) |
4 | df-brsiga 32150 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
5 | uniretop 23926 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
6 | 5 | fveq2i 6777 | . 2 ⊢ (sigAlgebra‘ℝ) = (sigAlgebra‘∪ (topGen‘ran (,))) |
7 | 3, 4, 6 | 3eltr4i 2852 | 1 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∪ cuni 4839 ran crn 5590 ‘cfv 6433 ℝcr 10870 (,)cioo 13079 topGenctg 17148 sigAlgebracsiga 32076 sigaGencsigagen 32106 𝔅ℝcbrsiga 32149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 df-topgen 17154 df-bases 22096 df-siga 32077 df-sigagen 32107 df-brsiga 32150 |
This theorem is referenced by: brsigasspwrn 32153 mbfmvolf 32233 elmbfmvol2 32234 mbfmcnt 32235 br2base 32236 dya2iocbrsiga 32242 dya2icobrsiga 32243 sxbrsigalem5 32255 sxbrsiga 32257 isrrvv 32410 rrvadd 32419 rrvmulc 32420 dstrvprob 32438 |
Copyright terms: Public domain | W3C validator |