| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsigarn | Structured version Visualization version GIF version | ||
| Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| brsigarn | ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . 3 ⊢ (topGen‘ran (,)) ∈ V | |
| 2 | sigagensiga 34149 | . . 3 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) |
| 4 | df-brsiga 34190 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 5 | uniretop 24675 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 6 | 5 | fveq2i 6825 | . 2 ⊢ (sigAlgebra‘ℝ) = (sigAlgebra‘∪ (topGen‘ran (,))) |
| 7 | 3, 4, 6 | 3eltr4i 2844 | 1 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∪ cuni 4859 ran crn 5617 ‘cfv 6481 ℝcr 11002 (,)cioo 13242 topGenctg 17338 sigAlgebracsiga 34116 sigaGencsigagen 34146 𝔅ℝcbrsiga 34189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioo 13246 df-topgen 17344 df-bases 22859 df-siga 34117 df-sigagen 34147 df-brsiga 34190 |
| This theorem is referenced by: brsigasspwrn 34193 mbfmvolf 34274 elmbfmvol2 34275 mbfmcnt 34276 br2base 34277 dya2iocbrsiga 34283 dya2icobrsiga 34284 sxbrsigalem5 34296 sxbrsiga 34298 isrrvv 34451 rrvadd 34460 rrvmulc 34461 dstrvprob 34480 |
| Copyright terms: Public domain | W3C validator |