| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsigarn | Structured version Visualization version GIF version | ||
| Description: The Borel Algebra is a sigma-algebra on the real numbers. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| brsigarn | ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . 3 ⊢ (topGen‘ran (,)) ∈ V | |
| 2 | sigagensiga 34172 | . . 3 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) |
| 4 | df-brsiga 34213 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 5 | uniretop 24701 | . . 3 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 6 | 5 | fveq2i 6879 | . 2 ⊢ (sigAlgebra‘ℝ) = (sigAlgebra‘∪ (topGen‘ran (,))) |
| 7 | 3, 4, 6 | 3eltr4i 2847 | 1 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∪ cuni 4883 ran crn 5655 ‘cfv 6531 ℝcr 11128 (,)cioo 13362 topGenctg 17451 sigAlgebracsiga 34139 sigaGencsigagen 34169 𝔅ℝcbrsiga 34212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 df-topgen 17457 df-bases 22884 df-siga 34140 df-sigagen 34170 df-brsiga 34213 |
| This theorem is referenced by: brsigasspwrn 34216 mbfmvolf 34298 elmbfmvol2 34299 mbfmcnt 34300 br2base 34301 dya2iocbrsiga 34307 dya2icobrsiga 34308 sxbrsigalem5 34320 sxbrsiga 34322 isrrvv 34475 rrvadd 34484 rrvmulc 34485 dstrvprob 34504 |
| Copyright terms: Public domain | W3C validator |