Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icobrsiga Structured version   Visualization version   GIF version

Theorem dya2icobrsiga 32876
Description: Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icobrsiga ran 𝐼 ⊆ 𝔅
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)

Proof of Theorem dya2icobrsiga
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7390 . . . 4 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2elrnmpo 7492 . . 3 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 simpr 485 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5 mnfxr 11212 . . . . . . . . . 10 -∞ ∈ ℝ*
65a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ ∈ ℝ*)
7 simpl 483 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
87zred 12607 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
9 2rp 12920 . . . . . . . . . . . . 13 2 ∈ ℝ+
109a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
11 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1210, 11rpexpcld 14150 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
138, 12rerpdivcld 12988 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
1413rexrd 11205 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
15 1red 11156 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
168, 15readdcld 11184 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
1716, 12rerpdivcld 12988 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
1817rexrd 11205 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
19 mnflt 13044 . . . . . . . . . 10 ((𝑥 / (2↑𝑛)) ∈ ℝ → -∞ < (𝑥 / (2↑𝑛)))
2013, 19syl 17 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ < (𝑥 / (2↑𝑛)))
21 difioo 31685 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ (𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) ∧ -∞ < (𝑥 / (2↑𝑛))) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
226, 14, 18, 20, 21syl31anc 1373 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
23 brsigarn 32783 . . . . . . . . . 10 𝔅 ∈ (sigAlgebra‘ℝ)
24 elrnsiga 32725 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2523, 24ax-mp 5 . . . . . . . . 9 𝔅 ran sigAlgebra
26 retop 24125 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
27 iooretop 24129 . . . . . . . . . . 11 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))
28 elsigagen 32746 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
2926, 27, 28mp2an 690 . . . . . . . . . 10 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
30 df-brsiga 32781 . . . . . . . . . 10 𝔅 = (sigaGen‘(topGen‘ran (,)))
3129, 30eleqtrri 2837 . . . . . . . . 9 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅
32 iooretop 24129 . . . . . . . . . . 11 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))
33 elsigagen 32746 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
3426, 32, 33mp2an 690 . . . . . . . . . 10 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
3534, 30eleqtrri 2837 . . . . . . . . 9 (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅
36 difelsiga 32732 . . . . . . . . 9 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅 ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅)
3725, 31, 35, 36mp3an 1461 . . . . . . . 8 ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅
3822, 37eqeltrrdi 2847 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
3938adantr 481 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
404, 39eqeltrd 2838 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ∈ 𝔅)
4140ex 413 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅))
4241rexlimivv 3196 . . 3 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅)
433, 42sylbi 216 . 2 (𝑑 ∈ ran 𝐼𝑑 ∈ 𝔅)
4443ssriv 3948 1 ran 𝐼 ⊆ 𝔅
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  wrex 3073  cdif 3907  wss 3910   cuni 4865   class class class wbr 5105  ran crn 5634  cfv 6496  (class class class)co 7357  cmpo 7359  cr 11050  1c1 11052   + caddc 11054  -∞cmnf 11187  *cxr 11188   < clt 11189   / cdiv 11812  2c2 12208  cz 12499  +crp 12915  (,)cioo 13264  [,)cico 13266  cexp 13967  topGenctg 17319  Topctop 22242  sigAlgebracsiga 32707  sigaGencsigagen 32737  𝔅cbrsiga 32780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-ioo 13268  df-ico 13270  df-seq 13907  df-exp 13968  df-topgen 17325  df-top 22243  df-bases 22296  df-siga 32708  df-sigagen 32738  df-brsiga 32781
This theorem is referenced by:  sxbrsigalem2  32886  sxbrsigalem5  32888
  Copyright terms: Public domain W3C validator