Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icobrsiga Structured version   Visualization version   GIF version

Theorem dya2icobrsiga 32239
Description: Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icobrsiga ran 𝐼 ⊆ 𝔅
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)

Proof of Theorem dya2icobrsiga
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7304 . . . 4 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2elrnmpo 7404 . . 3 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 simpr 485 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5 mnfxr 11033 . . . . . . . . . 10 -∞ ∈ ℝ*
65a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ ∈ ℝ*)
7 simpl 483 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
87zred 12425 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
9 2rp 12734 . . . . . . . . . . . . 13 2 ∈ ℝ+
109a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
11 simpr 485 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1210, 11rpexpcld 13960 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
138, 12rerpdivcld 12802 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
1413rexrd 11026 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
15 1red 10977 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
168, 15readdcld 11005 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
1716, 12rerpdivcld 12802 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
1817rexrd 11026 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
19 mnflt 12858 . . . . . . . . . 10 ((𝑥 / (2↑𝑛)) ∈ ℝ → -∞ < (𝑥 / (2↑𝑛)))
2013, 19syl 17 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ < (𝑥 / (2↑𝑛)))
21 difioo 31099 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ (𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) ∧ -∞ < (𝑥 / (2↑𝑛))) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
226, 14, 18, 20, 21syl31anc 1372 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
23 brsigarn 32148 . . . . . . . . . 10 𝔅 ∈ (sigAlgebra‘ℝ)
24 elrnsiga 32090 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2523, 24ax-mp 5 . . . . . . . . 9 𝔅 ran sigAlgebra
26 retop 23923 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
27 iooretop 23927 . . . . . . . . . . 11 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))
28 elsigagen 32111 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
2926, 27, 28mp2an 689 . . . . . . . . . 10 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
30 df-brsiga 32146 . . . . . . . . . 10 𝔅 = (sigaGen‘(topGen‘ran (,)))
3129, 30eleqtrri 2840 . . . . . . . . 9 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅
32 iooretop 23927 . . . . . . . . . . 11 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))
33 elsigagen 32111 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
3426, 32, 33mp2an 689 . . . . . . . . . 10 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
3534, 30eleqtrri 2840 . . . . . . . . 9 (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅
36 difelsiga 32097 . . . . . . . . 9 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅 ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅)
3725, 31, 35, 36mp3an 1460 . . . . . . . 8 ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅
3822, 37eqeltrrdi 2850 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
3938adantr 481 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
404, 39eqeltrd 2841 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ∈ 𝔅)
4140ex 413 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅))
4241rexlimivv 3223 . . 3 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅)
433, 42sylbi 216 . 2 (𝑑 ∈ ran 𝐼𝑑 ∈ 𝔅)
4443ssriv 3930 1 ran 𝐼 ⊆ 𝔅
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1542  wcel 2110  wrex 3067  cdif 3889  wss 3892   cuni 4845   class class class wbr 5079  ran crn 5591  cfv 6432  (class class class)co 7271  cmpo 7273  cr 10871  1c1 10873   + caddc 10875  -∞cmnf 11008  *cxr 11009   < clt 11010   / cdiv 11632  2c2 12028  cz 12319  +crp 12729  (,)cioo 13078  [,)cico 13080  cexp 13780  topGenctg 17146  Topctop 22040  sigAlgebracsiga 32072  sigaGencsigagen 32102  𝔅cbrsiga 32145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-ac2 10220  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-ac 9873  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-ioo 13082  df-ico 13084  df-seq 13720  df-exp 13781  df-topgen 17152  df-top 22041  df-bases 22094  df-siga 32073  df-sigagen 32103  df-brsiga 32146
This theorem is referenced by:  sxbrsigalem2  32249  sxbrsigalem5  32251
  Copyright terms: Public domain W3C validator