Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icobrsiga Structured version   Visualization version   GIF version

Theorem dya2icobrsiga 31136
 Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icobrsiga ran 𝐼 ⊆ 𝔅
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)

Proof of Theorem dya2icobrsiga
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7002 . . . 4 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2elrnmpo 7097 . . 3 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 simpr 477 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5 mnfxr 10490 . . . . . . . . . 10 -∞ ∈ ℝ*
65a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ ∈ ℝ*)
7 simpl 475 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
87zred 11893 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
9 2rp 12202 . . . . . . . . . . . . 13 2 ∈ ℝ+
109a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
11 simpr 477 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1210, 11rpexpcld 13416 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
138, 12rerpdivcld 12272 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
1413rexrd 10482 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
15 1red 10432 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
168, 15readdcld 10461 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
1716, 12rerpdivcld 12272 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
1817rexrd 10482 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
19 mnflt 12328 . . . . . . . . . 10 ((𝑥 / (2↑𝑛)) ∈ ℝ → -∞ < (𝑥 / (2↑𝑛)))
2013, 19syl 17 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ < (𝑥 / (2↑𝑛)))
21 difioo 30246 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ (𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) ∧ -∞ < (𝑥 / (2↑𝑛))) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
226, 14, 18, 20, 21syl31anc 1353 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
23 brsigarn 31045 . . . . . . . . . 10 𝔅 ∈ (sigAlgebra‘ℝ)
24 elrnsiga 30987 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2523, 24ax-mp 5 . . . . . . . . 9 𝔅 ran sigAlgebra
26 retop 23063 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
27 iooretop 23067 . . . . . . . . . . 11 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))
28 elsigagen 31008 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
2926, 27, 28mp2an 679 . . . . . . . . . 10 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
30 df-brsiga 31043 . . . . . . . . . 10 𝔅 = (sigaGen‘(topGen‘ran (,)))
3129, 30eleqtrri 2859 . . . . . . . . 9 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅
32 iooretop 23067 . . . . . . . . . . 11 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))
33 elsigagen 31008 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
3426, 32, 33mp2an 679 . . . . . . . . . 10 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
3534, 30eleqtrri 2859 . . . . . . . . 9 (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅
36 difelsiga 30994 . . . . . . . . 9 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅 ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅)
3725, 31, 35, 36mp3an 1440 . . . . . . . 8 ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅
3822, 37syl6eqelr 2869 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
3938adantr 473 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
404, 39eqeltrd 2860 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ∈ 𝔅)
4140ex 405 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅))
4241rexlimivv 3231 . . 3 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅)
433, 42sylbi 209 . 2 (𝑑 ∈ ran 𝐼𝑑 ∈ 𝔅)
4443ssriv 3858 1 ran 𝐼 ⊆ 𝔅
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 387   = wceq 1507   ∈ wcel 2048  ∃wrex 3083   ∖ cdif 3822   ⊆ wss 3825  ∪ cuni 4706   class class class wbr 4923  ran crn 5401  ‘cfv 6182  (class class class)co 6970   ∈ cmpo 6972  ℝcr 10326  1c1 10328   + caddc 10330  -∞cmnf 10464  ℝ*cxr 10465   < clt 10466   / cdiv 11090  2c2 11488  ℤcz 11786  ℝ+crp 12197  (,)cioo 12547  [,)cico 12549  ↑cexp 13237  topGenctg 16557  Topctop 21195  sigAlgebracsiga 30968  sigaGencsigagen 30999  𝔅ℝcbrsiga 31042 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-ac2 9675  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-iin 4789  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-oi 8761  df-dju 9116  df-card 9154  df-acn 9157  df-ac 9328  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-ioo 12551  df-ico 12553  df-seq 13178  df-exp 13238  df-topgen 16563  df-top 21196  df-bases 21248  df-siga 30969  df-sigagen 31000  df-brsiga 31043 This theorem is referenced by:  sxbrsigalem2  31146  sxbrsigalem5  31148
 Copyright terms: Public domain W3C validator