Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2icobrsiga Structured version   Visualization version   GIF version

Theorem dya2icobrsiga 34241
Description: Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
Assertion
Ref Expression
dya2icobrsiga ran 𝐼 ⊆ 𝔅
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐼(𝑥,𝑛)   𝐽(𝑥,𝑛)

Proof of Theorem dya2icobrsiga
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 dya2ioc.1 . . . 4 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
2 ovex 7481 . . . 4 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
31, 2elrnmpo 7586 . . 3 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
4 simpr 484 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
5 mnfxr 11347 . . . . . . . . . 10 -∞ ∈ ℝ*
65a1i 11 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ ∈ ℝ*)
7 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℤ)
87zred 12747 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
9 2rp 13062 . . . . . . . . . . . . 13 2 ∈ ℝ+
109a1i 11 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ+)
11 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
1210, 11rpexpcld 14296 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2↑𝑛) ∈ ℝ+)
138, 12rerpdivcld 13130 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ)
1413rexrd 11340 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 / (2↑𝑛)) ∈ ℝ*)
15 1red 11291 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℝ)
168, 15readdcld 11319 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑥 + 1) ∈ ℝ)
1716, 12rerpdivcld 13130 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
1817rexrd 11340 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
19 mnflt 13186 . . . . . . . . . 10 ((𝑥 / (2↑𝑛)) ∈ ℝ → -∞ < (𝑥 / (2↑𝑛)))
2013, 19syl 17 . . . . . . . . 9 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → -∞ < (𝑥 / (2↑𝑛)))
21 difioo 32787 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ (𝑥 / (2↑𝑛)) ∈ ℝ* ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) ∧ -∞ < (𝑥 / (2↑𝑛))) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
226, 14, 18, 20, 21syl31anc 1373 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
23 brsigarn 34148 . . . . . . . . . 10 𝔅 ∈ (sigAlgebra‘ℝ)
24 elrnsiga 34090 . . . . . . . . . 10 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
2523, 24ax-mp 5 . . . . . . . . 9 𝔅 ran sigAlgebra
26 retop 24803 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
27 iooretop 24807 . . . . . . . . . . 11 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))
28 elsigagen 34111 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
2926, 27, 28mp2an 691 . . . . . . . . . 10 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
30 df-brsiga 34146 . . . . . . . . . 10 𝔅 = (sigaGen‘(topGen‘ran (,)))
3129, 30eleqtrri 2843 . . . . . . . . 9 (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅
32 iooretop 24807 . . . . . . . . . . 11 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))
33 elsigagen 34111 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,))))
3426, 32, 33mp2an 691 . . . . . . . . . 10 (-∞(,)(𝑥 / (2↑𝑛))) ∈ (sigaGen‘(topGen‘ran (,)))
3534, 30eleqtrri 2843 . . . . . . . . 9 (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅
36 difelsiga 34097 . . . . . . . . 9 ((𝔅 ran sigAlgebra ∧ (-∞(,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅 ∧ (-∞(,)(𝑥 / (2↑𝑛))) ∈ 𝔅) → ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅)
3725, 31, 35, 36mp3an 1461 . . . . . . . 8 ((-∞(,)((𝑥 + 1) / (2↑𝑛))) ∖ (-∞(,)(𝑥 / (2↑𝑛)))) ∈ 𝔅
3822, 37eqeltrrdi 2853 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
3938adantr 480 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ 𝔅)
404, 39eqeltrd 2844 . . . . 5 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ∈ 𝔅)
4140ex 412 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅))
4241rexlimivv 3207 . . 3 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ∈ 𝔅)
433, 42sylbi 217 . 2 (𝑑 ∈ ran 𝐼𝑑 ∈ 𝔅)
4443ssriv 4012 1 ran 𝐼 ⊆ 𝔅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  wss 3976   cuni 4931   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  1c1 11185   + caddc 11187  -∞cmnf 11322  *cxr 11323   < clt 11324   / cdiv 11947  2c2 12348  cz 12639  +crp 13057  (,)cioo 13407  [,)cico 13409  cexp 14112  topGenctg 17497  Topctop 22920  sigAlgebracsiga 34072  sigaGencsigagen 34102  𝔅cbrsiga 34145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-ac 10185  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ioo 13411  df-ico 13413  df-seq 14053  df-exp 14113  df-topgen 17503  df-top 22921  df-bases 22974  df-siga 34073  df-sigagen 34103  df-brsiga 34146
This theorem is referenced by:  sxbrsigalem2  34251  sxbrsigalem5  34253
  Copyright terms: Public domain W3C validator