| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocbrsiga | Structured version Visualization version GIF version | ||
| Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| Ref | Expression |
|---|---|
| dya2iocbrsiga | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | 1, 2 | dya2iocival 34281 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 4 | mnfxr 11166 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ ∈ ℝ*) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ) | |
| 7 | 6 | zred 12574 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ) |
| 8 | 2rp 12892 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 11 | 9, 10 | rpexpcld 14151 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+) |
| 12 | 7, 11 | rerpdivcld 12962 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ) |
| 13 | 12 | rexrd 11159 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ*) |
| 14 | 1red 11110 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ) | |
| 15 | 7, 14 | readdcld 11138 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ) |
| 16 | 15, 11 | rerpdivcld 12962 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ) |
| 17 | 16 | rexrd 11159 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) |
| 18 | mnflt 13019 | . . . . 5 ⊢ ((𝑋 / (2↑𝑁)) ∈ ℝ → -∞ < (𝑋 / (2↑𝑁))) | |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ < (𝑋 / (2↑𝑁))) |
| 20 | difioo 32760 | . . . 4 ⊢ (((-∞ ∈ ℝ* ∧ (𝑋 / (2↑𝑁)) ∈ ℝ* ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) ∧ -∞ < (𝑋 / (2↑𝑁))) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | |
| 21 | 5, 13, 17, 19, 20 | syl31anc 1375 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 22 | brsigarn 34192 | . . . . 5 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 23 | elrnsiga 34134 | . . . . 5 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
| 25 | retop 24674 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 26 | iooretop 24678 | . . . . . 6 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 27 | elsigagen 34155 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 28 | 25, 26, 27 | mp2an 692 | . . . . 5 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 29 | df-brsiga 34190 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 30 | 28, 29 | eleqtrri 2830 | . . . 4 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ |
| 31 | iooretop 24678 | . . . . . 6 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 32 | elsigagen 34155 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 33 | 25, 31, 32 | mp2an 692 | . . . . 5 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 34 | 33, 29 | eleqtrri 2830 | . . . 4 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ |
| 35 | difelsiga 34141 | . . . 4 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ) | |
| 36 | 24, 30, 34, 35 | mp3an 1463 | . . 3 ⊢ ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ |
| 37 | 21, 36 | eqeltrrdi 2840 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ) |
| 38 | 3, 37 | eqeltrd 2831 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cuni 4859 class class class wbr 5091 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ℝcr 11002 1c1 11004 + caddc 11006 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 / cdiv 11771 2c2 12177 ℤcz 12465 ℝ+crp 12887 (,)cioo 13242 [,)cico 13244 ↑cexp 13965 topGenctg 17338 Topctop 22806 sigAlgebracsiga 34116 sigaGencsigagen 34146 𝔅ℝcbrsiga 34189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-ioo 13246 df-ico 13248 df-seq 13906 df-exp 13966 df-topgen 17344 df-top 22807 df-bases 22859 df-siga 34117 df-sigagen 34147 df-brsiga 34190 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |