| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocbrsiga | Structured version Visualization version GIF version | ||
| Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| Ref | Expression |
|---|---|
| dya2iocbrsiga | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | 1, 2 | dya2iocival 34264 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 4 | mnfxr 11231 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ ∈ ℝ*) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ) | |
| 7 | 6 | zred 12638 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ) |
| 8 | 2rp 12956 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 11 | 9, 10 | rpexpcld 14212 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+) |
| 12 | 7, 11 | rerpdivcld 13026 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ) |
| 13 | 12 | rexrd 11224 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ*) |
| 14 | 1red 11175 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ) | |
| 15 | 7, 14 | readdcld 11203 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ) |
| 16 | 15, 11 | rerpdivcld 13026 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ) |
| 17 | 16 | rexrd 11224 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) |
| 18 | mnflt 13083 | . . . . 5 ⊢ ((𝑋 / (2↑𝑁)) ∈ ℝ → -∞ < (𝑋 / (2↑𝑁))) | |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ < (𝑋 / (2↑𝑁))) |
| 20 | difioo 32705 | . . . 4 ⊢ (((-∞ ∈ ℝ* ∧ (𝑋 / (2↑𝑁)) ∈ ℝ* ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) ∧ -∞ < (𝑋 / (2↑𝑁))) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | |
| 21 | 5, 13, 17, 19, 20 | syl31anc 1375 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 22 | brsigarn 34174 | . . . . 5 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 23 | elrnsiga 34116 | . . . . 5 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
| 25 | retop 24649 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 26 | iooretop 24653 | . . . . . 6 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 27 | elsigagen 34137 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 28 | 25, 26, 27 | mp2an 692 | . . . . 5 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 29 | df-brsiga 34172 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 30 | 28, 29 | eleqtrri 2827 | . . . 4 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ |
| 31 | iooretop 24653 | . . . . . 6 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 32 | elsigagen 34137 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 33 | 25, 31, 32 | mp2an 692 | . . . . 5 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 34 | 33, 29 | eleqtrri 2827 | . . . 4 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ |
| 35 | difelsiga 34123 | . . . 4 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ) | |
| 36 | 24, 30, 34, 35 | mp3an 1463 | . . 3 ⊢ ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ |
| 37 | 21, 36 | eqeltrrdi 2837 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ) |
| 38 | 3, 37 | eqeltrd 2828 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cuni 4871 class class class wbr 5107 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ℝcr 11067 1c1 11069 + caddc 11071 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 / cdiv 11835 2c2 12241 ℤcz 12529 ℝ+crp 12951 (,)cioo 13306 [,)cico 13308 ↑cexp 14026 topGenctg 17400 Topctop 22780 sigAlgebracsiga 34098 sigaGencsigagen 34128 𝔅ℝcbrsiga 34171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-ioo 13310 df-ico 13312 df-seq 13967 df-exp 14027 df-topgen 17406 df-top 22781 df-bases 22833 df-siga 34099 df-sigagen 34129 df-brsiga 34172 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |