| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2iocbrsiga | Structured version Visualization version GIF version | ||
| Description: Dyadic intervals are Borel sets of ℝ. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| Ref | Expression |
|---|---|
| sxbrsiga.0 | ⊢ 𝐽 = (topGen‘ran (,)) |
| dya2ioc.1 | ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) |
| Ref | Expression |
|---|---|
| dya2iocbrsiga | ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sxbrsiga.0 | . . 3 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 2 | dya2ioc.1 | . . 3 ⊢ 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) | |
| 3 | 1, 2 | dya2iocival 34240 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 4 | mnfxr 11191 | . . . . 5 ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ ∈ ℝ*) |
| 6 | simpr 484 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℤ) | |
| 7 | 6 | zred 12598 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑋 ∈ ℝ) |
| 8 | 2rp 12916 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 9 | 8 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 2 ∈ ℝ+) |
| 10 | simpl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 11 | 9, 10 | rpexpcld 14172 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (2↑𝑁) ∈ ℝ+) |
| 12 | 7, 11 | rerpdivcld 12986 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ) |
| 13 | 12 | rexrd 11184 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 / (2↑𝑁)) ∈ ℝ*) |
| 14 | 1red 11135 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → 1 ∈ ℝ) | |
| 15 | 7, 14 | readdcld 11163 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋 + 1) ∈ ℝ) |
| 16 | 15, 11 | rerpdivcld 12986 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ) |
| 17 | 16 | rexrd 11184 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) |
| 18 | mnflt 13043 | . . . . 5 ⊢ ((𝑋 / (2↑𝑁)) ∈ ℝ → -∞ < (𝑋 / (2↑𝑁))) | |
| 19 | 12, 18 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → -∞ < (𝑋 / (2↑𝑁))) |
| 20 | difioo 32738 | . . . 4 ⊢ (((-∞ ∈ ℝ* ∧ (𝑋 / (2↑𝑁)) ∈ ℝ* ∧ ((𝑋 + 1) / (2↑𝑁)) ∈ ℝ*) ∧ -∞ < (𝑋 / (2↑𝑁))) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) | |
| 21 | 5, 13, 17, 19, 20 | syl31anc 1375 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁)))) |
| 22 | brsigarn 34150 | . . . . 5 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 23 | elrnsiga 34092 | . . . . 5 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 24 | 22, 23 | ax-mp 5 | . . . 4 ⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
| 25 | retop 24665 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 26 | iooretop 24669 | . . . . . 6 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 27 | elsigagen 34113 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 28 | 25, 26, 27 | mp2an 692 | . . . . 5 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 29 | df-brsiga 34148 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 30 | 28, 29 | eleqtrri 2827 | . . . 4 ⊢ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ |
| 31 | iooretop 24669 | . . . . . 6 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,)) | |
| 32 | elsigagen 34113 | . . . . . 6 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (topGen‘ran (,))) → (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 33 | 25, 31, 32 | mp2an 692 | . . . . 5 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ (sigaGen‘(topGen‘ran (,))) |
| 34 | 33, 29 | eleqtrri 2827 | . . . 4 ⊢ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ |
| 35 | difelsiga 34099 | . . . 4 ⊢ ((𝔅ℝ ∈ ∪ ran sigAlgebra ∧ (-∞(,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ ∧ (-∞(,)(𝑋 / (2↑𝑁))) ∈ 𝔅ℝ) → ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ) | |
| 36 | 24, 30, 34, 35 | mp3an 1463 | . . 3 ⊢ ((-∞(,)((𝑋 + 1) / (2↑𝑁))) ∖ (-∞(,)(𝑋 / (2↑𝑁)))) ∈ 𝔅ℝ |
| 37 | 21, 36 | eqeltrrdi 2837 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))) ∈ 𝔅ℝ) |
| 38 | 3, 37 | eqeltrd 2828 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cuni 4861 class class class wbr 5095 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ℝcr 11027 1c1 11029 + caddc 11031 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 / cdiv 11795 2c2 12201 ℤcz 12489 ℝ+crp 12911 (,)cioo 13266 [,)cico 13268 ↑cexp 13986 topGenctg 17359 Topctop 22796 sigAlgebracsiga 34074 sigaGencsigagen 34104 𝔅ℝcbrsiga 34147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-ioo 13270 df-ico 13272 df-seq 13927 df-exp 13987 df-topgen 17365 df-top 22797 df-bases 22849 df-siga 34075 df-sigagen 34105 df-brsiga 34148 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |