![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmbfmvol2 | Structured version Visualization version GIF version |
Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
Ref | Expression |
---|---|
elmbfmvol2 | ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23088 | . . . . . 6 ⊢ ran (,) ∈ TopBases | |
2 | bastg 21294 | . . . . . 6 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | retop 23089 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
5 | sssigagen 31082 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))) |
7 | 3, 6 | sstri 3862 | . . . 4 ⊢ ran (,) ⊆ (sigaGen‘(topGen‘ran (,))) |
8 | df-brsiga 31119 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
9 | 7, 8 | sseqtr4i 3889 | . . 3 ⊢ ran (,) ⊆ 𝔅ℝ |
10 | eqid 2773 | . . . . 5 ⊢ vol = vol | |
11 | dmvlsiga 31066 | . . . . . . 7 ⊢ dom vol ∈ (sigAlgebra‘ℝ) | |
12 | elrnsiga 31063 | . . . . . . 7 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ∪ ran sigAlgebra) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → dom vol ∈ ∪ ran sigAlgebra) |
14 | brsigarn 31121 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
15 | elrnsiga 31063 | . . . . . . 7 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
16 | 14, 15 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
17 | 13, 16 | ismbfm 31188 | . . . . 5 ⊢ (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol))) |
18 | 10, 17 | ax-mp 5 | . . . 4 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol)) |
19 | 18 | simprbi 489 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol) |
20 | ssralv 3918 | . . 3 ⊢ (ran (,) ⊆ 𝔅ℝ → (∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
21 | 9, 19, 20 | mpsyl 68 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
22 | 18 | simplbi 490 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom vol)) |
23 | elmapi 8227 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑𝑚 ℝ) → 𝐹:ℝ⟶ℝ) | |
24 | unibrsiga 31123 | . . . . 5 ⊢ ∪ 𝔅ℝ = ℝ | |
25 | unidmvol 23861 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
26 | 24, 25 | oveq12i 6987 | . . . 4 ⊢ (∪ 𝔅ℝ ↑𝑚 ∪ dom vol) = (ℝ ↑𝑚 ℝ) |
27 | 23, 26 | eleq2s 2879 | . . 3 ⊢ (𝐹 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom vol) → 𝐹:ℝ⟶ℝ) |
28 | ismbf 23948 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
29 | 22, 27, 28 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
30 | 21, 29 | mpbird 249 | 1 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∀wral 3083 ⊆ wss 3824 ∪ cuni 4709 ◡ccnv 5403 dom cdm 5404 ran crn 5405 “ cima 5407 ⟶wf 6182 ‘cfv 6186 (class class class)co 6975 ↑𝑚 cmap 8205 ℝcr 10333 (,)cioo 12553 topGenctg 16566 Topctop 21221 TopBasesctb 21273 volcvol 23783 MblFncmbf 23934 sigAlgebracsiga 31044 sigaGencsigagen 31075 𝔅ℝcbrsiga 31118 MblFnMcmbfm 31186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-inf2 8897 ax-cc 9654 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-disj 4895 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-of 7226 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-2o 7905 df-oadd 7908 df-er 8088 df-map 8207 df-pm 8208 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-sup 8700 df-inf 8701 df-oi 8768 df-dju 9123 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-div 11098 df-nn 11439 df-2 11502 df-3 11503 df-n0 11707 df-z 11793 df-uz 12058 df-q 12162 df-rp 12204 df-xadd 12324 df-ioo 12557 df-ico 12559 df-icc 12560 df-fz 12708 df-fzo 12849 df-fl 12976 df-seq 13184 df-exp 13244 df-hash 13505 df-cj 14318 df-re 14319 df-im 14320 df-sqrt 14454 df-abs 14455 df-clim 14705 df-rlim 14706 df-sum 14903 df-topgen 16572 df-xmet 20256 df-met 20257 df-top 21222 df-bases 21274 df-ovol 23784 df-vol 23785 df-mbf 23939 df-siga 31045 df-sigagen 31076 df-brsiga 31119 df-mbfm 31187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |