Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmbfmvol2 Structured version   Visualization version   GIF version

Theorem elmbfmvol2 34265
Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Assertion
Ref Expression
elmbfmvol2 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)

Proof of Theorem elmbfmvol2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 retopbas 24655 . . . . . 6 ran (,) ∈ TopBases
2 bastg 22860 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
31, 2ax-mp 5 . . . . 5 ran (,) ⊆ (topGen‘ran (,))
4 retop 24656 . . . . . 6 (topGen‘ran (,)) ∈ Top
5 sssigagen 34142 . . . . . 6 ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))))
64, 5ax-mp 5 . . . . 5 (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))
73, 6sstri 3959 . . . 4 ran (,) ⊆ (sigaGen‘(topGen‘ran (,)))
8 df-brsiga 34179 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
97, 8sseqtrri 3999 . . 3 ran (,) ⊆ 𝔅
10 eqid 2730 . . . . 5 vol = vol
11 dmvlsiga 34126 . . . . . . 7 dom vol ∈ (sigAlgebra‘ℝ)
12 elrnsiga 34123 . . . . . . 7 (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ran sigAlgebra)
1311, 12mp1i 13 . . . . . 6 (vol = vol → dom vol ∈ ran sigAlgebra)
14 brsigarn 34181 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
15 elrnsiga 34123 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1614, 15mp1i 13 . . . . . 6 (vol = vol → 𝔅 ran sigAlgebra)
1713, 16ismbfm 34248 . . . . 5 (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)))
1810, 17ax-mp 5 . . . 4 (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol))
1918simprbi 496 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)
20 ssralv 4018 . . 3 (ran (,) ⊆ 𝔅 → (∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
219, 19, 20mpsyl 68 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
2218simplbi 497 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ ( 𝔅m dom vol))
23 elmapi 8825 . . . 4 (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ)
24 unibrsiga 34183 . . . . 5 𝔅 = ℝ
25 unidmvol 25449 . . . . 5 dom vol = ℝ
2624, 25oveq12i 7402 . . . 4 ( 𝔅m dom vol) = (ℝ ↑m ℝ)
2723, 26eleq2s 2847 . . 3 (𝐹 ∈ ( 𝔅m dom vol) → 𝐹:ℝ⟶ℝ)
28 ismbf 25536 . . 3 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
2922, 27, 283syl 18 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
3021, 29mpbird 257 1 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   cuni 4874  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  (,)cioo 13313  topGenctg 17407  Topctop 22787  TopBasesctb 22839  volcvol 25371  MblFncmbf 25522  sigAlgebracsiga 34105  sigaGencsigagen 34135  𝔅cbrsiga 34178  MblFnMcmbfm 34246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-topgen 17413  df-xmet 21264  df-met 21265  df-top 22788  df-bases 22840  df-ovol 25372  df-vol 25373  df-mbf 25527  df-siga 34106  df-sigagen 34136  df-brsiga 34179  df-mbfm 34247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator