| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmbfmvol2 | Structured version Visualization version GIF version | ||
| Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| elmbfmvol2 | ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24697 | . . . . . 6 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22902 | . . . . . 6 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | retop 24698 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | sssigagen 34122 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 7 | 3, 6 | sstri 3968 | . . . 4 ⊢ ran (,) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 8 | df-brsiga 34159 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 9 | 7, 8 | sseqtrri 4008 | . . 3 ⊢ ran (,) ⊆ 𝔅ℝ |
| 10 | eqid 2735 | . . . . 5 ⊢ vol = vol | |
| 11 | dmvlsiga 34106 | . . . . . . 7 ⊢ dom vol ∈ (sigAlgebra‘ℝ) | |
| 12 | elrnsiga 34103 | . . . . . . 7 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ∪ ran sigAlgebra) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → dom vol ∈ ∪ ran sigAlgebra) |
| 14 | brsigarn 34161 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 15 | elrnsiga 34103 | . . . . . . 7 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 16 | 14, 15 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 17 | 13, 16 | ismbfm 34228 | . . . . 5 ⊢ (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol))) |
| 18 | 10, 17 | ax-mp 5 | . . . 4 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol)) |
| 19 | 18 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol) |
| 20 | ssralv 4027 | . . 3 ⊢ (ran (,) ⊆ 𝔅ℝ → (∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 21 | 9, 19, 20 | mpsyl 68 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 22 | 18 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol)) |
| 23 | elmapi 8861 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ) | |
| 24 | unibrsiga 34163 | . . . . 5 ⊢ ∪ 𝔅ℝ = ℝ | |
| 25 | unidmvol 25492 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 26 | 24, 25 | oveq12i 7415 | . . . 4 ⊢ (∪ 𝔅ℝ ↑m ∪ dom vol) = (ℝ ↑m ℝ) |
| 27 | 23, 26 | eleq2s 2852 | . . 3 ⊢ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) → 𝐹:ℝ⟶ℝ) |
| 28 | ismbf 25579 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 29 | 22, 27, 28 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
| 30 | 21, 29 | mpbird 257 | 1 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∪ cuni 4883 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ↑m cmap 8838 ℝcr 11126 (,)cioo 13360 topGenctg 17449 Topctop 22829 TopBasesctb 22881 volcvol 25414 MblFncmbf 25565 sigAlgebracsiga 34085 sigaGencsigagen 34115 𝔅ℝcbrsiga 34158 MblFnMcmbfm 34226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-xadd 13127 df-ioo 13364 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-topgen 17455 df-xmet 21306 df-met 21307 df-top 22830 df-bases 22882 df-ovol 25415 df-vol 25416 df-mbf 25570 df-siga 34086 df-sigagen 34116 df-brsiga 34159 df-mbfm 34227 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |