| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmbfmvol2 | Structured version Visualization version GIF version | ||
| Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| elmbfmvol2 | ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24675 | . . . . . 6 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22881 | . . . . . 6 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | retop 24676 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | sssigagen 34158 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 7 | 3, 6 | sstri 3939 | . . . 4 ⊢ ran (,) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 8 | df-brsiga 34195 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 9 | 7, 8 | sseqtrri 3979 | . . 3 ⊢ ran (,) ⊆ 𝔅ℝ |
| 10 | eqid 2731 | . . . . 5 ⊢ vol = vol | |
| 11 | dmvlsiga 34142 | . . . . . . 7 ⊢ dom vol ∈ (sigAlgebra‘ℝ) | |
| 12 | elrnsiga 34139 | . . . . . . 7 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ∪ ran sigAlgebra) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → dom vol ∈ ∪ ran sigAlgebra) |
| 14 | brsigarn 34197 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 15 | elrnsiga 34139 | . . . . . . 7 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 16 | 14, 15 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 17 | 13, 16 | ismbfm 34264 | . . . . 5 ⊢ (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol))) |
| 18 | 10, 17 | ax-mp 5 | . . . 4 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol)) |
| 19 | 18 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol) |
| 20 | ssralv 3998 | . . 3 ⊢ (ran (,) ⊆ 𝔅ℝ → (∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 21 | 9, 19, 20 | mpsyl 68 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 22 | 18 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol)) |
| 23 | elmapi 8773 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ) | |
| 24 | unibrsiga 34199 | . . . . 5 ⊢ ∪ 𝔅ℝ = ℝ | |
| 25 | unidmvol 25469 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 26 | 24, 25 | oveq12i 7358 | . . . 4 ⊢ (∪ 𝔅ℝ ↑m ∪ dom vol) = (ℝ ↑m ℝ) |
| 27 | 23, 26 | eleq2s 2849 | . . 3 ⊢ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) → 𝐹:ℝ⟶ℝ) |
| 28 | ismbf 25556 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 29 | 22, 27, 28 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
| 30 | 21, 29 | mpbird 257 | 1 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4856 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11005 (,)cioo 13245 topGenctg 17341 Topctop 22808 TopBasesctb 22860 volcvol 25391 MblFncmbf 25542 sigAlgebracsiga 34121 sigaGencsigagen 34151 𝔅ℝcbrsiga 34194 MblFnMcmbfm 34262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-disj 5057 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xadd 13012 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-topgen 17347 df-xmet 21284 df-met 21285 df-top 22809 df-bases 22861 df-ovol 25392 df-vol 25393 df-mbf 25547 df-siga 34122 df-sigagen 34152 df-brsiga 34195 df-mbfm 34263 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |