Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmbfmvol2 Structured version   Visualization version   GIF version

Theorem elmbfmvol2 31635
 Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Assertion
Ref Expression
elmbfmvol2 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)

Proof of Theorem elmbfmvol2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 retopbas 23366 . . . . . 6 ran (,) ∈ TopBases
2 bastg 21571 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
31, 2ax-mp 5 . . . . 5 ran (,) ⊆ (topGen‘ran (,))
4 retop 23367 . . . . . 6 (topGen‘ran (,)) ∈ Top
5 sssigagen 31514 . . . . . 6 ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))))
64, 5ax-mp 5 . . . . 5 (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))
73, 6sstri 3924 . . . 4 ran (,) ⊆ (sigaGen‘(topGen‘ran (,)))
8 df-brsiga 31551 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
97, 8sseqtrri 3952 . . 3 ran (,) ⊆ 𝔅
10 eqid 2798 . . . . 5 vol = vol
11 dmvlsiga 31498 . . . . . . 7 dom vol ∈ (sigAlgebra‘ℝ)
12 elrnsiga 31495 . . . . . . 7 (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ran sigAlgebra)
1311, 12mp1i 13 . . . . . 6 (vol = vol → dom vol ∈ ran sigAlgebra)
14 brsigarn 31553 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
15 elrnsiga 31495 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1614, 15mp1i 13 . . . . . 6 (vol = vol → 𝔅 ran sigAlgebra)
1713, 16ismbfm 31620 . . . . 5 (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)))
1810, 17ax-mp 5 . . . 4 (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol))
1918simprbi 500 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)
20 ssralv 3981 . . 3 (ran (,) ⊆ 𝔅 → (∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
219, 19, 20mpsyl 68 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
2218simplbi 501 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ ( 𝔅m dom vol))
23 elmapi 8411 . . . 4 (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ)
24 unibrsiga 31555 . . . . 5 𝔅 = ℝ
25 unidmvol 24145 . . . . 5 dom vol = ℝ
2624, 25oveq12i 7147 . . . 4 ( 𝔅m dom vol) = (ℝ ↑m ℝ)
2723, 26eleq2s 2908 . . 3 (𝐹 ∈ ( 𝔅m dom vol) → 𝐹:ℝ⟶ℝ)
28 ismbf 24232 . . 3 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
2922, 27, 283syl 18 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
3021, 29mpbird 260 1 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  ∪ cuni 4800  ◡ccnv 5518  dom cdm 5519  ran crn 5520   “ cima 5522  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135   ↑m cmap 8389  ℝcr 10525  (,)cioo 12726  topGenctg 16703  Topctop 21498  TopBasesctb 21550  volcvol 24067  MblFncmbf 24218  sigAlgebracsiga 31477  sigaGencsigagen 31507  𝔅ℝcbrsiga 31550  MblFnMcmbfm 31618 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-topgen 16709  df-xmet 20084  df-met 20085  df-top 21499  df-bases 21551  df-ovol 24068  df-vol 24069  df-mbf 24223  df-siga 31478  df-sigagen 31508  df-brsiga 31551  df-mbfm 31619 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator