| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmbfmvol2 | Structured version Visualization version GIF version | ||
| Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| elmbfmvol2 | ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24648 | . . . . . 6 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22853 | . . . . . 6 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | retop 24649 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | sssigagen 34135 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 7 | 3, 6 | sstri 3956 | . . . 4 ⊢ ran (,) ⊆ (sigaGen‘(topGen‘ran (,))) |
| 8 | df-brsiga 34172 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 9 | 7, 8 | sseqtrri 3996 | . . 3 ⊢ ran (,) ⊆ 𝔅ℝ |
| 10 | eqid 2729 | . . . . 5 ⊢ vol = vol | |
| 11 | dmvlsiga 34119 | . . . . . . 7 ⊢ dom vol ∈ (sigAlgebra‘ℝ) | |
| 12 | elrnsiga 34116 | . . . . . . 7 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ∪ ran sigAlgebra) | |
| 13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → dom vol ∈ ∪ ran sigAlgebra) |
| 14 | brsigarn 34174 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 15 | elrnsiga 34116 | . . . . . . 7 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 16 | 14, 15 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 17 | 13, 16 | ismbfm 34241 | . . . . 5 ⊢ (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol))) |
| 18 | 10, 17 | ax-mp 5 | . . . 4 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol)) |
| 19 | 18 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol) |
| 20 | ssralv 4015 | . . 3 ⊢ (ran (,) ⊆ 𝔅ℝ → (∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 21 | 9, 19, 20 | mpsyl 68 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
| 22 | 18 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol)) |
| 23 | elmapi 8822 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ) | |
| 24 | unibrsiga 34176 | . . . . 5 ⊢ ∪ 𝔅ℝ = ℝ | |
| 25 | unidmvol 25442 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
| 26 | 24, 25 | oveq12i 7399 | . . . 4 ⊢ (∪ 𝔅ℝ ↑m ∪ dom vol) = (ℝ ↑m ℝ) |
| 27 | 23, 26 | eleq2s 2846 | . . 3 ⊢ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) → 𝐹:ℝ⟶ℝ) |
| 28 | ismbf 25529 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
| 29 | 22, 27, 28 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
| 30 | 21, 29 | mpbird 257 | 1 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ∪ cuni 4871 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 (,)cioo 13306 topGenctg 17400 Topctop 22780 TopBasesctb 22832 volcvol 25364 MblFncmbf 25515 sigAlgebracsiga 34098 sigaGencsigagen 34128 𝔅ℝcbrsiga 34171 MblFnMcmbfm 34239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-topgen 17406 df-xmet 21257 df-met 21258 df-top 22781 df-bases 22833 df-ovol 25365 df-vol 25366 df-mbf 25520 df-siga 34099 df-sigagen 34129 df-brsiga 34172 df-mbfm 34240 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |