Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmbfmvol2 Structured version   Visualization version   GIF version

Theorem elmbfmvol2 34232
Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Assertion
Ref Expression
elmbfmvol2 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)

Proof of Theorem elmbfmvol2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 retopbas 24802 . . . . . 6 ran (,) ∈ TopBases
2 bastg 22994 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
31, 2ax-mp 5 . . . . 5 ran (,) ⊆ (topGen‘ran (,))
4 retop 24803 . . . . . 6 (topGen‘ran (,)) ∈ Top
5 sssigagen 34109 . . . . . 6 ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))))
64, 5ax-mp 5 . . . . 5 (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))
73, 6sstri 4018 . . . 4 ran (,) ⊆ (sigaGen‘(topGen‘ran (,)))
8 df-brsiga 34146 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
97, 8sseqtrri 4046 . . 3 ran (,) ⊆ 𝔅
10 eqid 2740 . . . . 5 vol = vol
11 dmvlsiga 34093 . . . . . . 7 dom vol ∈ (sigAlgebra‘ℝ)
12 elrnsiga 34090 . . . . . . 7 (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ran sigAlgebra)
1311, 12mp1i 13 . . . . . 6 (vol = vol → dom vol ∈ ran sigAlgebra)
14 brsigarn 34148 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
15 elrnsiga 34090 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1614, 15mp1i 13 . . . . . 6 (vol = vol → 𝔅 ran sigAlgebra)
1713, 16ismbfm 34215 . . . . 5 (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)))
1810, 17ax-mp 5 . . . 4 (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅m dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol))
1918simprbi 496 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)
20 ssralv 4077 . . 3 (ran (,) ⊆ 𝔅 → (∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
219, 19, 20mpsyl 68 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
2218simplbi 497 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ ( 𝔅m dom vol))
23 elmapi 8907 . . . 4 (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ)
24 unibrsiga 34150 . . . . 5 𝔅 = ℝ
25 unidmvol 25595 . . . . 5 dom vol = ℝ
2624, 25oveq12i 7460 . . . 4 ( 𝔅m dom vol) = (ℝ ↑m ℝ)
2723, 26eleq2s 2862 . . 3 (𝐹 ∈ ( 𝔅m dom vol) → 𝐹:ℝ⟶ℝ)
28 ismbf 25682 . . 3 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
2922, 27, 283syl 18 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
3021, 29mpbird 257 1 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  (,)cioo 13407  topGenctg 17497  Topctop 22920  TopBasesctb 22973  volcvol 25517  MblFncmbf 25668  sigAlgebracsiga 34072  sigaGencsigagen 34102  𝔅cbrsiga 34145  MblFnMcmbfm 34213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-topgen 17503  df-xmet 21380  df-met 21381  df-top 22921  df-bases 22974  df-ovol 25518  df-vol 25519  df-mbf 25673  df-siga 34073  df-sigagen 34103  df-brsiga 34146  df-mbfm 34214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator