Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmbfmvol2 Structured version   Visualization version   GIF version

Theorem elmbfmvol2 31203
Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Assertion
Ref Expression
elmbfmvol2 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)

Proof of Theorem elmbfmvol2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 retopbas 23088 . . . . . 6 ran (,) ∈ TopBases
2 bastg 21294 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
31, 2ax-mp 5 . . . . 5 ran (,) ⊆ (topGen‘ran (,))
4 retop 23089 . . . . . 6 (topGen‘ran (,)) ∈ Top
5 sssigagen 31082 . . . . . 6 ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))))
64, 5ax-mp 5 . . . . 5 (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))
73, 6sstri 3862 . . . 4 ran (,) ⊆ (sigaGen‘(topGen‘ran (,)))
8 df-brsiga 31119 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
97, 8sseqtr4i 3889 . . 3 ran (,) ⊆ 𝔅
10 eqid 2773 . . . . 5 vol = vol
11 dmvlsiga 31066 . . . . . . 7 dom vol ∈ (sigAlgebra‘ℝ)
12 elrnsiga 31063 . . . . . . 7 (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ran sigAlgebra)
1311, 12mp1i 13 . . . . . 6 (vol = vol → dom vol ∈ ran sigAlgebra)
14 brsigarn 31121 . . . . . . 7 𝔅 ∈ (sigAlgebra‘ℝ)
15 elrnsiga 31063 . . . . . . 7 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
1614, 15mp1i 13 . . . . . 6 (vol = vol → 𝔅 ran sigAlgebra)
1713, 16ismbfm 31188 . . . . 5 (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅𝑚 dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)))
1810, 17ax-mp 5 . . . 4 (𝐹 ∈ (dom volMblFnM𝔅) ↔ (𝐹 ∈ ( 𝔅𝑚 dom vol) ∧ ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol))
1918simprbi 489 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol)
20 ssralv 3918 . . 3 (ran (,) ⊆ 𝔅 → (∀𝑥 ∈ 𝔅 (𝐹𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
219, 19, 20mpsyl 68 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)
2218simplbi 490 . . 3 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ ( 𝔅𝑚 dom vol))
23 elmapi 8227 . . . 4 (𝐹 ∈ (ℝ ↑𝑚 ℝ) → 𝐹:ℝ⟶ℝ)
24 unibrsiga 31123 . . . . 5 𝔅 = ℝ
25 unidmvol 23861 . . . . 5 dom vol = ℝ
2624, 25oveq12i 6987 . . . 4 ( 𝔅𝑚 dom vol) = (ℝ ↑𝑚 ℝ)
2723, 26eleq2s 2879 . . 3 (𝐹 ∈ ( 𝔅𝑚 dom vol) → 𝐹:ℝ⟶ℝ)
28 ismbf 23948 . . 3 (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
2922, 27, 283syl 18 . 2 (𝐹 ∈ (dom volMblFnM𝔅) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
3021, 29mpbird 249 1 (𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3083  wss 3824   cuni 4709  ccnv 5403  dom cdm 5404  ran crn 5405  cima 5407  wf 6182  cfv 6186  (class class class)co 6975  𝑚 cmap 8205  cr 10333  (,)cioo 12553  topGenctg 16566  Topctop 21221  TopBasesctb 21273  volcvol 23783  MblFncmbf 23934  sigAlgebracsiga 31044  sigaGencsigagen 31075  𝔅cbrsiga 31118  MblFnMcmbfm 31186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cc 9654  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-disj 4895  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-of 7226  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-2o 7905  df-oadd 7908  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-inf 8701  df-oi 8768  df-dju 9123  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-rp 12204  df-xadd 12324  df-ioo 12557  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-clim 14705  df-rlim 14706  df-sum 14903  df-topgen 16572  df-xmet 20256  df-met 20257  df-top 21222  df-bases 21274  df-ovol 23784  df-vol 23785  df-mbf 23939  df-siga 31045  df-sigagen 31076  df-brsiga 31119  df-mbfm 31187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator