![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmbfmvol2 | Structured version Visualization version GIF version |
Description: Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.) |
Ref | Expression |
---|---|
elmbfmvol2 | ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24796 | . . . . . 6 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22988 | . . . . . 6 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | retop 24797 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ Top | |
5 | sssigagen 34125 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ Top → (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,)))) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (topGen‘ran (,)) ⊆ (sigaGen‘(topGen‘ran (,))) |
7 | 3, 6 | sstri 4004 | . . . 4 ⊢ ran (,) ⊆ (sigaGen‘(topGen‘ran (,))) |
8 | df-brsiga 34162 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
9 | 7, 8 | sseqtrri 4032 | . . 3 ⊢ ran (,) ⊆ 𝔅ℝ |
10 | eqid 2734 | . . . . 5 ⊢ vol = vol | |
11 | dmvlsiga 34109 | . . . . . . 7 ⊢ dom vol ∈ (sigAlgebra‘ℝ) | |
12 | elrnsiga 34106 | . . . . . . 7 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) → dom vol ∈ ∪ ran sigAlgebra) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → dom vol ∈ ∪ ran sigAlgebra) |
14 | brsigarn 34164 | . . . . . . 7 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
15 | elrnsiga 34106 | . . . . . . 7 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
16 | 14, 15 | mp1i 13 | . . . . . 6 ⊢ (vol = vol → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
17 | 13, 16 | ismbfm 34231 | . . . . 5 ⊢ (vol = vol → (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol))) |
18 | 10, 17 | ax-mp 5 | . . . 4 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) ↔ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) ∧ ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol)) |
19 | 18 | simprbi 496 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol) |
20 | ssralv 4063 | . . 3 ⊢ (ran (,) ⊆ 𝔅ℝ → (∀𝑥 ∈ 𝔅ℝ (◡𝐹 “ 𝑥) ∈ dom vol → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
21 | 9, 19, 20 | mpsyl 68 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol) |
22 | 18 | simplbi 497 | . . 3 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol)) |
23 | elmapi 8887 | . . . 4 ⊢ (𝐹 ∈ (ℝ ↑m ℝ) → 𝐹:ℝ⟶ℝ) | |
24 | unibrsiga 34166 | . . . . 5 ⊢ ∪ 𝔅ℝ = ℝ | |
25 | unidmvol 25589 | . . . . 5 ⊢ ∪ dom vol = ℝ | |
26 | 24, 25 | oveq12i 7442 | . . . 4 ⊢ (∪ 𝔅ℝ ↑m ∪ dom vol) = (ℝ ↑m ℝ) |
27 | 23, 26 | eleq2s 2856 | . . 3 ⊢ (𝐹 ∈ (∪ 𝔅ℝ ↑m ∪ dom vol) → 𝐹:ℝ⟶ℝ) |
28 | ismbf 25676 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | |
29 | 22, 27, 28 | 3syl 18 | . 2 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) |
30 | 21, 29 | mpbird 257 | 1 ⊢ (𝐹 ∈ (dom volMblFnM𝔅ℝ) → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 ∪ cuni 4911 ◡ccnv 5687 dom cdm 5688 ran crn 5689 “ cima 5691 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 ℝcr 11151 (,)cioo 13383 topGenctg 17483 Topctop 22914 TopBasesctb 22967 volcvol 25511 MblFncmbf 25662 sigAlgebracsiga 34088 sigaGencsigagen 34118 𝔅ℝcbrsiga 34161 MblFnMcmbfm 34229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cc 10472 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-disj 5115 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xadd 13152 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-rlim 15521 df-sum 15719 df-topgen 17489 df-xmet 21374 df-met 21375 df-top 22915 df-bases 22968 df-ovol 25512 df-vol 25513 df-mbf 25667 df-siga 34089 df-sigagen 34119 df-brsiga 34162 df-mbfm 34230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |