Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orrvcoel Structured version   Visualization version   GIF version

Theorem orrvcoel 31741
Description: If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
orrvcoel.5 (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
Assertion
Ref Expression
orrvcoel (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ dom 𝑃)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝑉(𝑦)

Proof of Theorem orrvcoel
StepHypRef Expression
1 orrvccel.1 . . 3 (𝜑𝑃 ∈ Prob)
2 domprobsiga 31687 . . 3 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
31, 2syl 17 . 2 (𝜑 → dom 𝑃 ran sigAlgebra)
4 retop 23356 . . 3 (topGen‘ran (,)) ∈ Top
54a1i 11 . 2 (𝜑 → (topGen‘ran (,)) ∈ Top)
6 orrvccel.2 . . . 4 (𝜑𝑋 ∈ (rRndVar‘𝑃))
71rrvmbfm 31718 . . . 4 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
86, 7mpbid 235 . . 3 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
9 df-brsiga 31459 . . . 4 𝔅 = (sigaGen‘(topGen‘ran (,)))
109oveq2i 7149 . . 3 (dom 𝑃MblFnM𝔅) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))
118, 10eleqtrdi 2926 . 2 (𝜑𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))))
12 orrvccel.4 . 2 (𝜑𝐴𝑉)
13 uniretop 23357 . . . 4 ℝ = (topGen‘ran (,))
14 rabeq 3468 . . . 4 (ℝ = (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1513, 14ax-mp 5 . . 3 {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}
16 orrvcoel.5 . . 3 (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
1715, 16eqeltrrid 2921 . 2 (𝜑 → {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,)))
183, 5, 11, 12, 17orvcoel 31737 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {crab 3136   cuni 4819   class class class wbr 5047  dom cdm 5536  ran crn 5537  cfv 6336  (class class class)co 7138  cr 10521  (,)cioo 12724  topGenctg 16700  Topctop 21487  sigAlgebracsiga 31385  sigaGencsigagen 31415  𝔅cbrsiga 31458  MblFnMcmbfm 31526  Probcprb 31683  rRndVarcrrv 31716  RV/𝑐corvc 31731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-pre-lttri 10596  ax-pre-lttrn 10597
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-ioo 12728  df-topgen 16706  df-top 21488  df-bases 21540  df-esum 31305  df-siga 31386  df-sigagen 31416  df-brsiga 31459  df-meas 31473  df-mbfm 31527  df-prob 31684  df-rrv 31717  df-orvc 31732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator