| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvcoel | Structured version Visualization version GIF version | ||
| Description: If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| orrvcoel.5 | ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) |
| Ref | Expression |
|---|---|
| orrvcoel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34443 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 4 | retop 24700 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
| 6 | orrvccel.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 7 | 1 | rrvmbfm 34474 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 8 | 6, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 9 | df-brsiga 34213 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 10 | 9 | oveq2i 7416 | . . 3 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
| 11 | 8, 10 | eleqtrdi 2844 | . 2 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
| 12 | orrvccel.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | uniretop 24701 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 14 | rabeq 3430 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
| 15 | 13, 14 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
| 16 | orrvcoel.5 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) | |
| 17 | 15, 16 | eqeltrrid 2839 | . 2 ⊢ (𝜑 → {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) |
| 18 | 3, 5, 11, 12, 17 | orvcoel 34494 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 ∪ cuni 4883 class class class wbr 5119 dom cdm 5654 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 (,)cioo 13362 topGenctg 17451 Topctop 22831 sigAlgebracsiga 34139 sigaGencsigagen 34169 𝔅ℝcbrsiga 34212 MblFnMcmbfm 34280 Probcprb 34439 rRndVarcrrv 34472 ∘RV/𝑐corvc 34488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-ioo 13366 df-topgen 17457 df-top 22832 df-bases 22884 df-esum 34059 df-siga 34140 df-sigagen 34170 df-brsiga 34213 df-meas 34227 df-mbfm 34281 df-prob 34440 df-rrv 34473 df-orvc 34489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |