Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvcoel | Structured version Visualization version GIF version |
Description: If the relation produces open sets, preimage maps of a random variable are measurable sets. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
orrvcoel.5 | ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) |
Ref | Expression |
---|---|
orrvcoel | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | domprobsiga 32372 | . . 3 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
4 | retop 23921 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
6 | orrvccel.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
7 | 1 | rrvmbfm 32403 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
8 | 6, 7 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
9 | df-brsiga 32144 | . . . 4 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
10 | 9 | oveq2i 7280 | . . 3 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
11 | 8, 10 | eleqtrdi 2851 | . 2 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
12 | orrvccel.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
13 | uniretop 23922 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
14 | rabeq 3417 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
16 | orrvcoel.5 | . . 3 ⊢ (𝜑 → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) | |
17 | 15, 16 | eqeltrrid 2846 | . 2 ⊢ (𝜑 → {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} ∈ (topGen‘ran (,))) |
18 | 3, 5, 11, 12, 17 | orvcoel 32422 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 ∪ cuni 4845 class class class wbr 5079 dom cdm 5589 ran crn 5590 ‘cfv 6431 (class class class)co 7269 ℝcr 10869 (,)cioo 13076 topGenctg 17144 Topctop 22038 sigAlgebracsiga 32070 sigaGencsigagen 32100 𝔅ℝcbrsiga 32143 MblFnMcmbfm 32211 Probcprb 32368 rRndVarcrrv 32401 ∘RV/𝑐corvc 32416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-pre-lttri 10944 ax-pre-lttrn 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-er 8479 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-ioo 13080 df-topgen 17150 df-top 22039 df-bases 22092 df-esum 31990 df-siga 32071 df-sigagen 32101 df-brsiga 32144 df-meas 32158 df-mbfm 32212 df-prob 32369 df-rrv 32402 df-orvc 32417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |