Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orrvcval4 Structured version   Visualization version   GIF version

Theorem orrvcval4 31125
Description: The value of the preimage mapping operator can be restricted to preimages of subsets of RR. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orrvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝑉(𝑦)

Proof of Theorem orrvcval4
StepHypRef Expression
1 orrvccel.1 . . . 4 (𝜑𝑃 ∈ Prob)
2 domprobsiga 31072 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
4 retop 22973 . . . 4 (topGen‘ran (,)) ∈ Top
54a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
6 orrvccel.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
71rrvmbfm 31103 . . . . 5 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
86, 7mpbid 224 . . . 4 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
9 df-brsiga 30843 . . . . 5 𝔅 = (sigaGen‘(topGen‘ran (,)))
109oveq2i 6933 . . . 4 (dom 𝑃MblFnM𝔅) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))
118, 10syl6eleq 2868 . . 3 (𝜑𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))))
12 orrvccel.4 . . 3 (𝜑𝐴𝑉)
133, 5, 11, 12orvcval4 31121 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}))
14 uniretop 22974 . . . 4 ℝ = (topGen‘ran (,))
15 rabeq 3388 . . . 4 (ℝ = (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1614, 15ax-mp 5 . . 3 {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}
1716imaeq2i 5718 . 2 (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1813, 17syl6eqr 2831 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  {crab 3093   cuni 4671   class class class wbr 4886  ccnv 5354  dom cdm 5355  ran crn 5356  cima 5358  cfv 6135  (class class class)co 6922  cr 10271  (,)cioo 12487  topGenctg 16484  Topctop 21105  sigAlgebracsiga 30768  sigaGencsigagen 30799  𝔅cbrsiga 30842  MblFnMcmbfm 30910  Probcprb 31068  rRndVarcrrv 31101  RV/𝑐corvc 31116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-ioo 12491  df-topgen 16490  df-top 21106  df-bases 21158  df-esum 30688  df-siga 30769  df-sigagen 30800  df-brsiga 30843  df-meas 30857  df-mbfm 30911  df-prob 31069  df-rrv 31102  df-orvc 31117
This theorem is referenced by:  orvcelval  31129  dstfrvel  31134  orvclteinc  31136
  Copyright terms: Public domain W3C validator