Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orrvcval4 Structured version   Visualization version   GIF version

Theorem orrvcval4 34456
Description: The value of the preimage mapping operator can be restricted to preimages of subsets of . (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orrvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝑉(𝑦)

Proof of Theorem orrvcval4
StepHypRef Expression
1 orrvccel.1 . . . 4 (𝜑𝑃 ∈ Prob)
2 domprobsiga 34402 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
4 retop 24649 . . . 4 (topGen‘ran (,)) ∈ Top
54a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
6 orrvccel.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
71rrvmbfm 34433 . . . . 5 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
86, 7mpbid 232 . . . 4 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
9 df-brsiga 34172 . . . . 5 𝔅 = (sigaGen‘(topGen‘ran (,)))
109oveq2i 7398 . . . 4 (dom 𝑃MblFnM𝔅) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))
118, 10eleqtrdi 2838 . . 3 (𝜑𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))))
12 orrvccel.4 . . 3 (𝜑𝐴𝑉)
133, 5, 11, 12orvcval4 34452 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}))
14 uniretop 24650 . . . 4 ℝ = (topGen‘ran (,))
15 rabeq 3420 . . . 4 (ℝ = (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1614, 15ax-mp 5 . . 3 {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}
1716imaeq2i 6029 . 2 (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1813, 17eqtr4di 2782 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405   cuni 4871   class class class wbr 5107  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  cr 11067  (,)cioo 13306  topGenctg 17400  Topctop 22780  sigAlgebracsiga 34098  sigaGencsigagen 34128  𝔅cbrsiga 34171  MblFnMcmbfm 34239  Probcprb 34398  rRndVarcrrv 34431  RV/𝑐corvc 34447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioo 13310  df-topgen 17406  df-top 22781  df-bases 22833  df-esum 34018  df-siga 34099  df-sigagen 34129  df-brsiga 34172  df-meas 34186  df-mbfm 34240  df-prob 34399  df-rrv 34432  df-orvc 34448
This theorem is referenced by:  orvcelval  34460  dstfrvel  34465  orvclteinc  34467
  Copyright terms: Public domain W3C validator