| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvcval4 | Structured version Visualization version GIF version | ||
| Description: The value of the preimage mapping operator can be restricted to preimages of subsets of ℝ. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| orrvccel.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| orrvccel.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orrvccel.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| orrvcval4 | ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orrvccel.1 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | domprobsiga 34424 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 4 | retop 24676 | . . . 4 ⊢ (topGen‘ran (,)) ∈ Top | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → (topGen‘ran (,)) ∈ Top) |
| 6 | orrvccel.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 7 | 1 | rrvmbfm 34455 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 8 | 6, 7 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ)) |
| 9 | df-brsiga 34195 | . . . . 5 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 10 | 9 | oveq2i 7357 | . . . 4 ⊢ (dom 𝑃MblFnM𝔅ℝ) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))) |
| 11 | 8, 10 | eleqtrdi 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))) |
| 12 | orrvccel.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 13 | 3, 5, 11, 12 | orvcval4 34474 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})) |
| 14 | uniretop 24677 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
| 15 | rabeq 3409 | . . . 4 ⊢ (ℝ = ∪ (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴} |
| 17 | 16 | imaeq2i 6006 | . 2 ⊢ (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}) = (◡𝑋 “ {𝑦 ∈ ∪ (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}) |
| 18 | 13, 17 | eqtr4di 2784 | 1 ⊢ (𝜑 → (𝑋∘RV/𝑐𝑅𝐴) = (◡𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∪ cuni 4856 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 ran crn 5615 “ cima 5617 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 (,)cioo 13245 topGenctg 17341 Topctop 22808 sigAlgebracsiga 34121 sigaGencsigagen 34151 𝔅ℝcbrsiga 34194 MblFnMcmbfm 34262 Probcprb 34420 rRndVarcrrv 34453 ∘RV/𝑐corvc 34469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 df-topgen 17347 df-top 22809 df-bases 22861 df-esum 34041 df-siga 34122 df-sigagen 34152 df-brsiga 34195 df-meas 34209 df-mbfm 34263 df-prob 34421 df-rrv 34454 df-orvc 34470 |
| This theorem is referenced by: orvcelval 34482 dstfrvel 34487 orvclteinc 34489 |
| Copyright terms: Public domain | W3C validator |