Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orrvcval4 Structured version   Visualization version   GIF version

Theorem orrvcval4 34449
Description: The value of the preimage mapping operator can be restricted to preimages of subsets of . (Contributed by Thierry Arnoux, 21-Jan-2017.)
Hypotheses
Ref Expression
orrvccel.1 (𝜑𝑃 ∈ Prob)
orrvccel.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orrvccel.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
orrvcval4 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑦)   𝑉(𝑦)

Proof of Theorem orrvcval4
StepHypRef Expression
1 orrvccel.1 . . . 4 (𝜑𝑃 ∈ Prob)
2 domprobsiga 34395 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
31, 2syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
4 retop 24682 . . . 4 (topGen‘ran (,)) ∈ Top
54a1i 11 . . 3 (𝜑 → (topGen‘ran (,)) ∈ Top)
6 orrvccel.2 . . . . 5 (𝜑𝑋 ∈ (rRndVar‘𝑃))
71rrvmbfm 34426 . . . . 5 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
86, 7mpbid 232 . . . 4 (𝜑𝑋 ∈ (dom 𝑃MblFnM𝔅))
9 df-brsiga 34165 . . . . 5 𝔅 = (sigaGen‘(topGen‘ran (,)))
109oveq2i 7380 . . . 4 (dom 𝑃MblFnM𝔅) = (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,))))
118, 10eleqtrdi 2838 . . 3 (𝜑𝑋 ∈ (dom 𝑃MblFnM(sigaGen‘(topGen‘ran (,)))))
12 orrvccel.4 . . 3 (𝜑𝐴𝑉)
133, 5, 11, 12orvcval4 34445 . 2 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}))
14 uniretop 24683 . . . 4 ℝ = (topGen‘ran (,))
15 rabeq 3417 . . . 4 (ℝ = (topGen‘ran (,)) → {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1614, 15ax-mp 5 . . 3 {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴} = {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴}
1716imaeq2i 6018 . 2 (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}) = (𝑋 “ {𝑦 (topGen‘ran (,)) ∣ 𝑦𝑅𝐴})
1813, 17eqtr4di 2782 1 (𝜑 → (𝑋RV/𝑐𝑅𝐴) = (𝑋 “ {𝑦 ∈ ℝ ∣ 𝑦𝑅𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402   cuni 4867   class class class wbr 5102  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  cfv 6499  (class class class)co 7369  cr 11043  (,)cioo 13282  topGenctg 17376  Topctop 22813  sigAlgebracsiga 34091  sigaGencsigagen 34121  𝔅cbrsiga 34164  MblFnMcmbfm 34232  Probcprb 34391  rRndVarcrrv 34424  RV/𝑐corvc 34440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ioo 13286  df-topgen 17382  df-top 22814  df-bases 22866  df-esum 34011  df-siga 34092  df-sigagen 34122  df-brsiga 34165  df-meas 34179  df-mbfm 34233  df-prob 34392  df-rrv 34425  df-orvc 34441
This theorem is referenced by:  orvcelval  34453  dstfrvel  34458  orvclteinc  34460
  Copyright terms: Public domain W3C validator