![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > orrvcval4 | Structured version Visualization version GIF version |
Description: The value of the preimage mapping operator can be restricted to preimages of subsets of β. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
orrvccel.1 | β’ (π β π β Prob) |
orrvccel.2 | β’ (π β π β (rRndVarβπ)) |
orrvccel.4 | β’ (π β π΄ β π) |
Ref | Expression |
---|---|
orrvcval4 | β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β β β£ π¦π π΄})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orrvccel.1 | . . . 4 β’ (π β π β Prob) | |
2 | domprobsiga 33709 | . . . 4 β’ (π β Prob β dom π β βͺ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . 3 β’ (π β dom π β βͺ ran sigAlgebra) |
4 | retop 24499 | . . . 4 β’ (topGenβran (,)) β Top | |
5 | 4 | a1i 11 | . . 3 β’ (π β (topGenβran (,)) β Top) |
6 | orrvccel.2 | . . . . 5 β’ (π β π β (rRndVarβπ)) | |
7 | 1 | rrvmbfm 33740 | . . . . 5 β’ (π β (π β (rRndVarβπ) β π β (dom πMblFnMπ β))) |
8 | 6, 7 | mpbid 231 | . . . 4 β’ (π β π β (dom πMblFnMπ β)) |
9 | df-brsiga 33479 | . . . . 5 β’ π β = (sigaGenβ(topGenβran (,))) | |
10 | 9 | oveq2i 7423 | . . . 4 β’ (dom πMblFnMπ β) = (dom πMblFnM(sigaGenβ(topGenβran (,)))) |
11 | 8, 10 | eleqtrdi 2842 | . . 3 β’ (π β π β (dom πMblFnM(sigaGenβ(topGenβran (,))))) |
12 | orrvccel.4 | . . 3 β’ (π β π΄ β π) | |
13 | 3, 5, 11, 12 | orvcval4 33758 | . 2 β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β βͺ (topGenβran (,)) β£ π¦π π΄})) |
14 | uniretop 24500 | . . . 4 β’ β = βͺ (topGenβran (,)) | |
15 | rabeq 3445 | . . . 4 β’ (β = βͺ (topGenβran (,)) β {π¦ β β β£ π¦π π΄} = {π¦ β βͺ (topGenβran (,)) β£ π¦π π΄}) | |
16 | 14, 15 | ax-mp 5 | . . 3 β’ {π¦ β β β£ π¦π π΄} = {π¦ β βͺ (topGenβran (,)) β£ π¦π π΄} |
17 | 16 | imaeq2i 6057 | . 2 β’ (β‘π β {π¦ β β β£ π¦π π΄}) = (β‘π β {π¦ β βͺ (topGenβran (,)) β£ π¦π π΄}) |
18 | 13, 17 | eqtr4di 2789 | 1 β’ (π β (πβRV/ππ π΄) = (β‘π β {π¦ β β β£ π¦π π΄})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 βͺ cuni 4908 class class class wbr 5148 β‘ccnv 5675 dom cdm 5676 ran crn 5677 β cima 5679 βcfv 6543 (class class class)co 7412 βcr 11113 (,)cioo 13329 topGenctg 17388 Topctop 22616 sigAlgebracsiga 33405 sigaGencsigagen 33435 π βcbrsiga 33478 MblFnMcmbfm 33546 Probcprb 33705 rRndVarcrrv 33738 βRV/πcorvc 33753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ioo 13333 df-topgen 17394 df-top 22617 df-bases 22670 df-esum 33325 df-siga 33406 df-sigagen 33436 df-brsiga 33479 df-meas 33493 df-mbfm 33547 df-prob 33706 df-rrv 33739 df-orvc 33754 |
This theorem is referenced by: orvcelval 33766 dstfrvel 33771 orvclteinc 33773 |
Copyright terms: Public domain | W3C validator |