MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Structured version   Visualization version   GIF version

Theorem peano5nni 11906
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 11904 . . 3 ℕ = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω)
2 df-ima 5593 . . 3 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
31, 2eqtri 2766 . 2 ℕ = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
4 frfnom 8236 . . . . 5 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω
54a1i 11 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω)
6 fveq2 6756 . . . . . . . 8 (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅))
76eleq1d 2823 . . . . . . 7 (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴))
8 fveq2 6756 . . . . . . . 8 (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧))
98eleq1d 2823 . . . . . . 7 (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴))
10 fveq2 6756 . . . . . . . 8 (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧))
1110eleq1d 2823 . . . . . . 7 (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
12 ax-1cn 10860 . . . . . . . . 9 1 ∈ ℂ
13 fr0g 8237 . . . . . . . . 9 (1 ∈ ℂ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1)
1412, 13ax-mp 5 . . . . . . . 8 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1
15 simpl 482 . . . . . . . 8 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → 1 ∈ 𝐴)
1614, 15eqeltrid 2843 . . . . . . 7 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴)
17 oveq1 7262 . . . . . . . . . . . 12 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑥 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
1817eleq1d 2823 . . . . . . . . . . 11 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → ((𝑥 + 1) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
1918rspccv 3549 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2019ad2antlr 723 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
21 ovex 7288 . . . . . . . . . . . 12 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V
22 eqid 2738 . . . . . . . . . . . . 13 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
23 oveq1 7262 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
24 oveq1 7262 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑦 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2522, 23, 24frsucmpt2 8241 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2621, 25mpan2 687 . . . . . . . . . . 11 (𝑧 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2726eleq1d 2823 . . . . . . . . . 10 (𝑧 ∈ ω → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2827adantl 481 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2920, 28sylibrd 258 . . . . . . . 8 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
3029expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴)))
317, 9, 11, 16, 30finds2 7721 . . . . . 6 (𝑦 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3231com12 32 . . . . 5 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3332ralrimiv 3106 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴)
34 ffnfv 6974 . . . 4 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
355, 33, 34sylanbrc 582 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴)
3635frnd 6592 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) ⊆ 𝐴)
373, 36eqsstrid 3965 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  c0 4253  cmpt 5153  ran crn 5581  cres 5582  cima 5583  suc csuc 6253   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211  cc 10800  1c1 10803   + caddc 10805  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-1cn 10860
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904
This theorem is referenced by:  nnssre  11907  nnsscn  11908  dfnn2  11916  nnind  11921  nnindf  31035
  Copyright terms: Public domain W3C validator