MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Structured version   Visualization version   GIF version

Theorem peano5nni 12211
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 12209 . . 3 ℕ = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω)
2 df-ima 5688 . . 3 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
31, 2eqtri 2761 . 2 ℕ = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
4 frfnom 8430 . . . . 5 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω
54a1i 11 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω)
6 fveq2 6888 . . . . . . . 8 (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅))
76eleq1d 2819 . . . . . . 7 (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴))
8 fveq2 6888 . . . . . . . 8 (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧))
98eleq1d 2819 . . . . . . 7 (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴))
10 fveq2 6888 . . . . . . . 8 (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧))
1110eleq1d 2819 . . . . . . 7 (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
12 ax-1cn 11164 . . . . . . . . 9 1 ∈ ℂ
13 fr0g 8431 . . . . . . . . 9 (1 ∈ ℂ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1)
1412, 13ax-mp 5 . . . . . . . 8 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1
15 simpl 484 . . . . . . . 8 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → 1 ∈ 𝐴)
1614, 15eqeltrid 2838 . . . . . . 7 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴)
17 oveq1 7411 . . . . . . . . . . . 12 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑥 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
1817eleq1d 2819 . . . . . . . . . . 11 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → ((𝑥 + 1) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
1918rspccv 3609 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2019ad2antlr 726 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
21 ovex 7437 . . . . . . . . . . . 12 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V
22 eqid 2733 . . . . . . . . . . . . 13 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
23 oveq1 7411 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
24 oveq1 7411 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑦 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2522, 23, 24frsucmpt2 8435 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2621, 25mpan2 690 . . . . . . . . . . 11 (𝑧 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2726eleq1d 2819 . . . . . . . . . 10 (𝑧 ∈ ω → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2827adantl 483 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2920, 28sylibrd 259 . . . . . . . 8 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
3029expcom 415 . . . . . . 7 (𝑧 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴)))
317, 9, 11, 16, 30finds2 7886 . . . . . 6 (𝑦 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3231com12 32 . . . . 5 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3332ralrimiv 3146 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴)
34 ffnfv 7113 . . . 4 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
355, 33, 34sylanbrc 584 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴)
3635frnd 6722 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) ⊆ 𝐴)
373, 36eqsstrid 4029 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3947  c0 4321  cmpt 5230  ran crn 5676  cres 5677  cima 5678  suc csuc 6363   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7404  ωcom 7850  reccrdg 8404  cc 11104  1c1 11107   + caddc 11109  cn 12208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720  ax-1cn 11164
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-nn 12209
This theorem is referenced by:  nnssre  12212  nnsscn  12213  dfnn2  12221  nnind  12226  nnindf  32003
  Copyright terms: Public domain W3C validator