MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Structured version   Visualization version   GIF version

Theorem peano5nni 11444
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 11442 . . 3 ℕ = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω)
2 df-ima 5421 . . 3 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
31, 2eqtri 2802 . 2 ℕ = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
4 frfnom 7876 . . . . 5 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω
54a1i 11 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω)
6 fveq2 6501 . . . . . . . 8 (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅))
76eleq1d 2850 . . . . . . 7 (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴))
8 fveq2 6501 . . . . . . . 8 (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧))
98eleq1d 2850 . . . . . . 7 (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴))
10 fveq2 6501 . . . . . . . 8 (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧))
1110eleq1d 2850 . . . . . . 7 (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
12 ax-1cn 10395 . . . . . . . . 9 1 ∈ ℂ
13 fr0g 7877 . . . . . . . . 9 (1 ∈ ℂ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1)
1412, 13ax-mp 5 . . . . . . . 8 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1
15 simpl 475 . . . . . . . 8 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → 1 ∈ 𝐴)
1614, 15syl5eqel 2870 . . . . . . 7 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴)
17 oveq1 6985 . . . . . . . . . . . 12 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑥 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
1817eleq1d 2850 . . . . . . . . . . 11 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → ((𝑥 + 1) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
1918rspccv 3532 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2019ad2antlr 714 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
21 ovex 7010 . . . . . . . . . . . 12 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V
22 eqid 2778 . . . . . . . . . . . . 13 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
23 oveq1 6985 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
24 oveq1 6985 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑦 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2522, 23, 24frsucmpt2 7881 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2621, 25mpan2 678 . . . . . . . . . . 11 (𝑧 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2726eleq1d 2850 . . . . . . . . . 10 (𝑧 ∈ ω → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2827adantl 474 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2920, 28sylibrd 251 . . . . . . . 8 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
3029expcom 406 . . . . . . 7 (𝑧 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴)))
317, 9, 11, 16, 30finds2 7427 . . . . . 6 (𝑦 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3231com12 32 . . . . 5 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3332ralrimiv 3131 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴)
34 ffnfv 6707 . . . 4 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
355, 33, 34sylanbrc 575 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴)
3635frnd 6353 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) ⊆ 𝐴)
373, 36syl5eqss 3907 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wral 3088  Vcvv 3415  wss 3831  c0 4180  cmpt 5009  ran crn 5409  cres 5410  cima 5411  suc csuc 6033   Fn wfn 6185  wf 6186  cfv 6190  (class class class)co 6978  ωcom 7398  reccrdg 7851  cc 10335  1c1 10338   + caddc 10340  cn 11441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-1cn 10395
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-ov 6981  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-nn 11442
This theorem is referenced by:  nnssre  11445  nnsscn  11446  dfnn2  11456  nnind  11461  nnindf  30284
  Copyright terms: Public domain W3C validator