MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5nni Structured version   Visualization version   GIF version

Theorem peano5nni 12165
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem peano5nni
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nn 12163 . . 3 ℕ = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω)
2 df-ima 5644 . . 3 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) “ ω) = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
31, 2eqtri 2752 . 2 ℕ = ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
4 frfnom 8380 . . . . 5 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω
54a1i 11 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω)
6 fveq2 6840 . . . . . . . 8 (𝑦 = ∅ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅))
76eleq1d 2813 . . . . . . 7 (𝑦 = ∅ → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴))
8 fveq2 6840 . . . . . . . 8 (𝑦 = 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧))
98eleq1d 2813 . . . . . . 7 (𝑦 = 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴))
10 fveq2 6840 . . . . . . . 8 (𝑦 = suc 𝑧 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧))
1110eleq1d 2813 . . . . . . 7 (𝑦 = suc 𝑧 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
12 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
13 fr0g 8381 . . . . . . . . 9 (1 ∈ ℂ → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1)
1412, 13ax-mp 5 . . . . . . . 8 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) = 1
15 simpl 482 . . . . . . . 8 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → 1 ∈ 𝐴)
1614, 15eqeltrid 2832 . . . . . . 7 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘∅) ∈ 𝐴)
17 oveq1 7376 . . . . . . . . . . . 12 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑥 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
1817eleq1d 2813 . . . . . . . . . . 11 (𝑥 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → ((𝑥 + 1) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
1918rspccv 3582 . . . . . . . . . 10 (∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2019ad2antlr 727 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
21 ovex 7402 . . . . . . . . . . . 12 (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V
22 eqid 2729 . . . . . . . . . . . . 13 (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) = (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)
23 oveq1 7376 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 + 1) = (𝑛 + 1))
24 oveq1 7376 . . . . . . . . . . . . 13 (𝑦 = ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) → (𝑦 + 1) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2522, 23, 24frsucmpt2 8385 . . . . . . . . . . . 12 ((𝑧 ∈ ω ∧ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ V) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2621, 25mpan2 691 . . . . . . . . . . 11 (𝑧 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) = (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1))
2726eleq1d 2813 . . . . . . . . . 10 (𝑧 ∈ ω → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2827adantl 481 . . . . . . . . 9 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴 ↔ (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) + 1) ∈ 𝐴))
2920, 28sylibrd 259 . . . . . . . 8 (((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) ∧ 𝑧 ∈ ω) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴))
3029expcom 413 . . . . . . 7 (𝑧 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑧) ∈ 𝐴 → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘suc 𝑧) ∈ 𝐴)))
317, 9, 11, 16, 30finds2 7854 . . . . . 6 (𝑦 ∈ ω → ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3231com12 32 . . . . 5 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (𝑦 ∈ ω → ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
3332ralrimiv 3124 . . . 4 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴)
34 ffnfv 7073 . . . 4 ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴 ↔ ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) Fn ω ∧ ∀𝑦 ∈ ω ((rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω)‘𝑦) ∈ 𝐴))
355, 33, 34sylanbrc 583 . . 3 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω):ω⟶𝐴)
3635frnd 6678 . 2 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ran (rec((𝑛 ∈ V ↦ (𝑛 + 1)), 1) ↾ ω) ⊆ 𝐴)
373, 36eqsstrid 3982 1 ((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  c0 4292  cmpt 5183  ran crn 5632  cres 5633  cima 5634  suc csuc 6322   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354  cc 11042  1c1 11045   + caddc 11047  cn 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-1cn 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163
This theorem is referenced by:  nnssre  12166  nnsscn  12167  dfnn2  12175  nnind  12180  nnindf  32717
  Copyright terms: Public domain W3C validator