| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnn3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfnn3 | ⊢ ℕ = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2822 | . . . 4 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 2 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 3 | 2 | raleqbi1dv 3321 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 4 | 1, 3 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 5 | dfnn2 12261 | . . . . 5 ⊢ ℕ = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} | |
| 6 | 5 | eqeq2i 2747 | . . . 4 ⊢ (𝑥 = ℕ ↔ 𝑥 = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)}) |
| 7 | eleq2 2822 | . . . . 5 ⊢ (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ)) | |
| 8 | eleq2 2822 | . . . . . 6 ⊢ (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ)) | |
| 9 | 8 | raleqbi1dv 3321 | . . . . 5 ⊢ (𝑥 = ℕ → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) |
| 10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))) |
| 11 | 6, 10 | sylbir 235 | . . 3 ⊢ (𝑥 = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))) |
| 12 | nnssre 12252 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
| 13 | 5, 12 | eqsstrri 4011 | . . . 4 ⊢ ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ |
| 14 | 1nn 12259 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 15 | peano2nn 12260 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 16 | 15 | rgen 3052 | . . . . 5 ⊢ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ |
| 17 | 14, 16 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ) |
| 18 | 13, 17 | pm3.2i 470 | . . 3 ⊢ (∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ ∧ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) |
| 19 | 4, 11, 18 | intabs 5329 | . 2 ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 20 | 3anass 1094 | . . . 4 ⊢ ((𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))) | |
| 21 | 20 | abbii 2801 | . . 3 ⊢ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} |
| 22 | 21 | inteqi 4930 | . 2 ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} |
| 23 | dfnn2 12261 | . 2 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 24 | 19, 22, 23 | 3eqtr4ri 2768 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ⊆ wss 3931 ∩ cint 4926 (class class class)co 7413 ℝcr 11136 1c1 11138 + caddc 11140 ℕcn 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-i2m1 11205 ax-1ne0 11206 ax-rrecex 11209 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |