| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnn3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the set of positive integers. Definition of positive integers in [Apostol] p. 22. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| dfnn3 | ⊢ ℕ = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2824 | . . . 4 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 2 | eleq2 2824 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 3 | 2 | raleqbi1dv 3321 | . . . 4 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
| 4 | 1, 3 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
| 5 | dfnn2 12258 | . . . . 5 ⊢ ℕ = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} | |
| 6 | 5 | eqeq2i 2749 | . . . 4 ⊢ (𝑥 = ℕ ↔ 𝑥 = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)}) |
| 7 | eleq2 2824 | . . . . 5 ⊢ (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ)) | |
| 8 | eleq2 2824 | . . . . . 6 ⊢ (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ)) | |
| 9 | 8 | raleqbi1dv 3321 | . . . . 5 ⊢ (𝑥 = ℕ → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) |
| 10 | 7, 9 | anbi12d 632 | . . . 4 ⊢ (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))) |
| 11 | 6, 10 | sylbir 235 | . . 3 ⊢ (𝑥 = ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))) |
| 12 | nnssre 12249 | . . . . 5 ⊢ ℕ ⊆ ℝ | |
| 13 | 5, 12 | eqsstrri 4011 | . . . 4 ⊢ ∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ |
| 14 | 1nn 12256 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 15 | peano2nn 12257 | . . . . . 6 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 16 | 15 | rgen 3054 | . . . . 5 ⊢ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ |
| 17 | 14, 16 | pm3.2i 470 | . . . 4 ⊢ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ) |
| 18 | 13, 17 | pm3.2i 470 | . . 3 ⊢ (∩ {𝑧 ∣ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)} ⊆ ℝ ∧ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) |
| 19 | 4, 11, 18 | intabs 5324 | . 2 ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 20 | 3anass 1094 | . . . 4 ⊢ ((𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))) | |
| 21 | 20 | abbii 2803 | . . 3 ⊢ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} = {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} |
| 22 | 21 | inteqi 4931 | . 2 ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥))} |
| 23 | dfnn2 12258 | . 2 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 24 | 19, 22, 23 | 3eqtr4ri 2770 | 1 ⊢ ℕ = ∩ {𝑥 ∣ (𝑥 ⊆ ℝ ∧ 1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ⊆ wss 3931 ∩ cint 4927 (class class class)co 7410 ℝcr 11133 1c1 11135 + caddc 11137 ℕcn 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |