| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8364 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
| 2 | fvelrnb 6887 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
| 4 | ovex 7386 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 6 | oveq1 7360 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
| 7 | oveq1 7360 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
| 8 | 5, 6, 7 | frsucmpt2 8369 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 9 | 4, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 10 | peano2 7830 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 11 | fnfvelrn 7018 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
| 12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
| 13 | df-nn 12147 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
| 14 | df-ima 5636 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 15 | 13, 14 | eqtri 2752 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
| 16 | 12, 15 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
| 17 | 9, 16 | eqeltrrd 2829 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
| 18 | oveq1 7360 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
| 19 | 18 | eleq1d 2813 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
| 20 | 17, 19 | syl5ibcom 245 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
| 21 | 20 | rexlimiv 3123 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
| 22 | 3, 21 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
| 23 | 22, 15 | eleq2s 2846 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ↦ cmpt 5176 ran crn 5624 ↾ cres 5625 “ cima 5626 suc csuc 6313 Fn wfn 6481 ‘cfv 6486 (class class class)co 7353 ωcom 7806 reccrdg 8338 1c1 11029 + caddc 11031 ℕcn 12146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 |
| This theorem is referenced by: dfnn2 12159 dfnn3 12160 peano2nnd 12163 nnind 12164 nnaddcl 12169 2nn 12219 3nn 12225 4nn 12229 5nn 12232 6nn 12235 7nn 12238 8nn 12241 9nn 12244 nnunb 12398 nneo 12578 10nn 12625 fzonn0p1p1 13665 ser1const 13983 expp1 13993 facp1 14203 relexpsucnnl 14955 isercolllem1 15590 isercoll2 15594 climcndslem2 15775 climcnds 15776 harmonic 15784 trireciplem 15787 trirecip 15788 rpnnen2lem9 16149 sqrt2irr 16176 nno 16311 nnoddm1d2 16315 rplpwr 16487 prmind2 16614 eulerthlem2 16711 pcmpt 16822 pockthi 16837 prmreclem6 16851 dec5nprm 16996 mulgnnp1 18979 chfacfisf 22757 chfacfisfcpmat 22758 cayhamlem1 22769 1stcfb 23348 bcthlem3 25242 bcthlem4 25243 ovolunlem1a 25413 ovolicc2lem4 25437 voliunlem1 25467 volsup 25473 volsup2 25522 itg1climres 25631 mbfi1fseqlem5 25636 itg2monolem1 25667 itg2i1fseqle 25671 itg2i1fseq 25672 itg2i1fseq2 25673 itg2addlem 25675 itg2gt0 25677 itg2cnlem1 25678 aaliou3lem7 26273 emcllem1 26922 emcllem2 26923 emcllem3 26924 emcllem5 26926 emcllem6 26927 emcllem7 26928 zetacvg 26941 lgam1 26990 bclbnd 27207 bposlem5 27215 2sqlem10 27355 dchrisumlem2 27417 logdivbnd 27483 pntrsumo1 27492 pntrsumbnd 27493 wwlksext2clwwlk 30019 numclwwlk2lem1 30338 numclwlk2lem2f 30339 opsqrlem5 32106 opsqrlem6 32107 nnindf 32777 psgnfzto1st 33060 esumpmono 34048 fibp1 34371 rrvsum 34424 subfacp1lem6 35160 subfaclim 35163 bcprod 35713 bccolsum 35714 iprodgam 35717 faclimlem1 35718 faclimlem2 35719 faclim2 35723 nn0prpwlem 36298 mblfinlem2 37640 volsupnfl 37647 seqpo 37729 incsequz 37730 incsequz2 37731 geomcau 37741 heiborlem6 37798 bfplem1 37804 fimgmcyc 42510 fsuppind 42566 jm2.27dlem4 42988 nnsplit 45341 sumnnodd 45615 stoweidlem20 46005 wallispilem4 46053 wallispi2lem1 46056 wallispi2lem2 46057 stirlinglem4 46062 stirlinglem8 46066 stirlinglem11 46069 stirlinglem12 46070 stirlinglem13 46071 vonioolem2 46666 vonicclem2 46669 deccarry 47299 iccpartres 47406 iccelpart 47421 odz2prm2pw 47551 fmtnoprmfac1 47553 fmtnoprmfac2 47555 lighneallem4 47598 |
| Copyright terms: Public domain | W3C validator |