MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Structured version   Visualization version   GIF version

Theorem peano2nn 12276
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8474 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω
2 fvelrnb 6969 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴))
31, 2ax-mp 5 . . 3 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)
4 ovex 7464 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V
5 eqid 2735 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
6 oveq1 7438 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
7 oveq1 7438 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
85, 6, 7frsucmpt2 8479 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
94, 8mpan2 691 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
10 peano2 7913 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
11 fnfvelrn 7100 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
121, 10, 11sylancr 587 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
13 df-nn 12265 . . . . . . . 8 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
14 df-ima 5702 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1513, 14eqtri 2763 . . . . . . 7 ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1612, 15eleqtrrdi 2850 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ)
179, 16eqeltrrd 2840 . . . . 5 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ)
18 oveq1 7438 . . . . . 6 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1))
1918eleq1d 2824 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
2017, 19syl5ibcom 245 . . . 4 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ))
2120rexlimiv 3146 . . 3 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)
223, 21sylbi 217 . 2 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ)
2322, 15eleq2s 2857 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cmpt 5231  ran crn 5690  cres 5691  cima 5692  suc csuc 6388   Fn wfn 6558  cfv 6563  (class class class)co 7431  ωcom 7887  reccrdg 8448  1c1 11154   + caddc 11156  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  dfnn2  12277  dfnn3  12278  peano2nnd  12281  nnind  12282  nnaddcl  12287  2nn  12337  3nn  12343  4nn  12347  5nn  12350  6nn  12353  7nn  12356  8nn  12359  9nn  12362  nnunb  12520  nneo  12700  10nn  12747  fzonn0p1p1  13780  ser1const  14096  expp1  14106  facp1  14314  relexpsucnnl  15066  isercolllem1  15698  isercoll2  15702  climcndslem2  15883  climcnds  15884  harmonic  15892  trireciplem  15895  trirecip  15896  rpnnen2lem9  16255  sqrt2irr  16282  nno  16416  nnoddm1d2  16420  rplpwr  16592  prmind2  16719  eulerthlem2  16816  pcmpt  16926  pockthi  16941  prmreclem6  16955  dec5nprm  17100  mulgnnp1  19113  chfacfisf  22876  chfacfisfcpmat  22877  cayhamlem1  22888  1stcfb  23469  bcthlem3  25374  bcthlem4  25375  ovolunlem1a  25545  ovolicc2lem4  25569  voliunlem1  25599  volsup  25605  volsup2  25654  itg1climres  25764  mbfi1fseqlem5  25769  itg2monolem1  25800  itg2i1fseqle  25804  itg2i1fseq  25805  itg2i1fseq2  25806  itg2addlem  25808  itg2gt0  25810  itg2cnlem1  25811  aaliou3lem7  26406  emcllem1  27054  emcllem2  27055  emcllem3  27056  emcllem5  27058  emcllem6  27059  emcllem7  27060  zetacvg  27073  lgam1  27122  bclbnd  27339  bposlem5  27347  2sqlem10  27487  dchrisumlem2  27549  logdivbnd  27615  pntrsumo1  27624  pntrsumbnd  27625  wwlksext2clwwlk  30086  numclwwlk2lem1  30405  numclwlk2lem2f  30406  opsqrlem5  32173  opsqrlem6  32174  nnindf  32826  psgnfzto1st  33108  esumpmono  34060  fibp1  34383  rrvsum  34436  subfacp1lem6  35170  subfaclim  35173  bcprod  35718  bccolsum  35719  iprodgam  35722  faclimlem1  35723  faclimlem2  35724  faclim2  35728  nn0prpwlem  36305  mblfinlem2  37645  volsupnfl  37652  seqpo  37734  incsequz  37735  incsequz2  37736  geomcau  37746  heiborlem6  37803  bfplem1  37809  fimgmcyc  42521  fsuppind  42577  jm2.27dlem4  43001  nnsplit  45308  sumnnodd  45586  stoweidlem20  45976  wallispilem4  46024  wallispi2lem1  46027  wallispi2lem2  46028  stirlinglem4  46033  stirlinglem8  46037  stirlinglem11  46040  stirlinglem12  46041  stirlinglem13  46042  vonioolem2  46637  vonicclem2  46640  deccarry  47261  iccpartres  47343  iccelpart  47358  odz2prm2pw  47488  fmtnoprmfac1  47490  fmtnoprmfac2  47492  lighneallem4  47535
  Copyright terms: Public domain W3C validator