MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Structured version   Visualization version   GIF version

Theorem peano2nn 12278
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8475 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω
2 fvelrnb 6969 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴))
31, 2ax-mp 5 . . 3 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)
4 ovex 7464 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V
5 eqid 2737 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
6 oveq1 7438 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
7 oveq1 7438 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
85, 6, 7frsucmpt2 8480 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
94, 8mpan2 691 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
10 peano2 7912 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
11 fnfvelrn 7100 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
121, 10, 11sylancr 587 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
13 df-nn 12267 . . . . . . . 8 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
14 df-ima 5698 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1513, 14eqtri 2765 . . . . . . 7 ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1612, 15eleqtrrdi 2852 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ)
179, 16eqeltrrd 2842 . . . . 5 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ)
18 oveq1 7438 . . . . . 6 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1))
1918eleq1d 2826 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
2017, 19syl5ibcom 245 . . . 4 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ))
2120rexlimiv 3148 . . 3 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)
223, 21sylbi 217 . 2 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ)
2322, 15eleq2s 2859 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  cmpt 5225  ran crn 5686  cres 5687  cima 5688  suc csuc 6386   Fn wfn 6556  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449  1c1 11156   + caddc 11158  cn 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267
This theorem is referenced by:  dfnn2  12279  dfnn3  12280  peano2nnd  12283  nnind  12284  nnaddcl  12289  2nn  12339  3nn  12345  4nn  12349  5nn  12352  6nn  12355  7nn  12358  8nn  12361  9nn  12364  nnunb  12522  nneo  12702  10nn  12749  fzonn0p1p1  13783  ser1const  14099  expp1  14109  facp1  14317  relexpsucnnl  15069  isercolllem1  15701  isercoll2  15705  climcndslem2  15886  climcnds  15887  harmonic  15895  trireciplem  15898  trirecip  15899  rpnnen2lem9  16258  sqrt2irr  16285  nno  16419  nnoddm1d2  16423  rplpwr  16595  prmind2  16722  eulerthlem2  16819  pcmpt  16930  pockthi  16945  prmreclem6  16959  dec5nprm  17104  mulgnnp1  19100  chfacfisf  22860  chfacfisfcpmat  22861  cayhamlem1  22872  1stcfb  23453  bcthlem3  25360  bcthlem4  25361  ovolunlem1a  25531  ovolicc2lem4  25555  voliunlem1  25585  volsup  25591  volsup2  25640  itg1climres  25749  mbfi1fseqlem5  25754  itg2monolem1  25785  itg2i1fseqle  25789  itg2i1fseq  25790  itg2i1fseq2  25791  itg2addlem  25793  itg2gt0  25795  itg2cnlem1  25796  aaliou3lem7  26391  emcllem1  27039  emcllem2  27040  emcllem3  27041  emcllem5  27043  emcllem6  27044  emcllem7  27045  zetacvg  27058  lgam1  27107  bclbnd  27324  bposlem5  27332  2sqlem10  27472  dchrisumlem2  27534  logdivbnd  27600  pntrsumo1  27609  pntrsumbnd  27610  wwlksext2clwwlk  30076  numclwwlk2lem1  30395  numclwlk2lem2f  30396  opsqrlem5  32163  opsqrlem6  32164  nnindf  32821  psgnfzto1st  33125  esumpmono  34080  fibp1  34403  rrvsum  34456  subfacp1lem6  35190  subfaclim  35193  bcprod  35738  bccolsum  35739  iprodgam  35742  faclimlem1  35743  faclimlem2  35744  faclim2  35748  nn0prpwlem  36323  mblfinlem2  37665  volsupnfl  37672  seqpo  37754  incsequz  37755  incsequz2  37756  geomcau  37766  heiborlem6  37823  bfplem1  37829  fimgmcyc  42544  fsuppind  42600  jm2.27dlem4  43024  nnsplit  45369  sumnnodd  45645  stoweidlem20  46035  wallispilem4  46083  wallispi2lem1  46086  wallispi2lem2  46087  stirlinglem4  46092  stirlinglem8  46096  stirlinglem11  46099  stirlinglem12  46100  stirlinglem13  46101  vonioolem2  46696  vonicclem2  46699  deccarry  47323  iccpartres  47405  iccelpart  47420  odz2prm2pw  47550  fmtnoprmfac1  47552  fmtnoprmfac2  47554  lighneallem4  47597
  Copyright terms: Public domain W3C validator