![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8474 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
2 | fvelrnb 6969 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
4 | ovex 7464 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
5 | eqid 2735 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
6 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
7 | oveq1 7438 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
8 | 5, 6, 7 | frsucmpt2 8479 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
9 | 4, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
10 | peano2 7913 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
11 | fnfvelrn 7100 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
13 | df-nn 12265 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
14 | df-ima 5702 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
15 | 13, 14 | eqtri 2763 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
16 | 12, 15 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
17 | 9, 16 | eqeltrrd 2840 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
18 | oveq1 7438 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
19 | 18 | eleq1d 2824 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
20 | 17, 19 | syl5ibcom 245 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
21 | 20 | rexlimiv 3146 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
22 | 3, 21 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
23 | 22, 15 | eleq2s 2857 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ↦ cmpt 5231 ran crn 5690 ↾ cres 5691 “ cima 5692 suc csuc 6388 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ωcom 7887 reccrdg 8448 1c1 11154 + caddc 11156 ℕcn 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 |
This theorem is referenced by: dfnn2 12277 dfnn3 12278 peano2nnd 12281 nnind 12282 nnaddcl 12287 2nn 12337 3nn 12343 4nn 12347 5nn 12350 6nn 12353 7nn 12356 8nn 12359 9nn 12362 nnunb 12520 nneo 12700 10nn 12747 fzonn0p1p1 13780 ser1const 14096 expp1 14106 facp1 14314 relexpsucnnl 15066 isercolllem1 15698 isercoll2 15702 climcndslem2 15883 climcnds 15884 harmonic 15892 trireciplem 15895 trirecip 15896 rpnnen2lem9 16255 sqrt2irr 16282 nno 16416 nnoddm1d2 16420 rplpwr 16592 prmind2 16719 eulerthlem2 16816 pcmpt 16926 pockthi 16941 prmreclem6 16955 dec5nprm 17100 mulgnnp1 19113 chfacfisf 22876 chfacfisfcpmat 22877 cayhamlem1 22888 1stcfb 23469 bcthlem3 25374 bcthlem4 25375 ovolunlem1a 25545 ovolicc2lem4 25569 voliunlem1 25599 volsup 25605 volsup2 25654 itg1climres 25764 mbfi1fseqlem5 25769 itg2monolem1 25800 itg2i1fseqle 25804 itg2i1fseq 25805 itg2i1fseq2 25806 itg2addlem 25808 itg2gt0 25810 itg2cnlem1 25811 aaliou3lem7 26406 emcllem1 27054 emcllem2 27055 emcllem3 27056 emcllem5 27058 emcllem6 27059 emcllem7 27060 zetacvg 27073 lgam1 27122 bclbnd 27339 bposlem5 27347 2sqlem10 27487 dchrisumlem2 27549 logdivbnd 27615 pntrsumo1 27624 pntrsumbnd 27625 wwlksext2clwwlk 30086 numclwwlk2lem1 30405 numclwlk2lem2f 30406 opsqrlem5 32173 opsqrlem6 32174 nnindf 32826 psgnfzto1st 33108 esumpmono 34060 fibp1 34383 rrvsum 34436 subfacp1lem6 35170 subfaclim 35173 bcprod 35718 bccolsum 35719 iprodgam 35722 faclimlem1 35723 faclimlem2 35724 faclim2 35728 nn0prpwlem 36305 mblfinlem2 37645 volsupnfl 37652 seqpo 37734 incsequz 37735 incsequz2 37736 geomcau 37746 heiborlem6 37803 bfplem1 37809 fimgmcyc 42521 fsuppind 42577 jm2.27dlem4 43001 nnsplit 45308 sumnnodd 45586 stoweidlem20 45976 wallispilem4 46024 wallispi2lem1 46027 wallispi2lem2 46028 stirlinglem4 46033 stirlinglem8 46037 stirlinglem11 46040 stirlinglem12 46041 stirlinglem13 46042 vonioolem2 46637 vonicclem2 46640 deccarry 47261 iccpartres 47343 iccelpart 47358 odz2prm2pw 47488 fmtnoprmfac1 47490 fmtnoprmfac2 47492 lighneallem4 47535 |
Copyright terms: Public domain | W3C validator |