| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8403 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
| 2 | fvelrnb 6921 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
| 4 | ovex 7420 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 6 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
| 7 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
| 8 | 5, 6, 7 | frsucmpt2 8408 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 9 | 4, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 10 | peano2 7866 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 11 | fnfvelrn 7052 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
| 12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
| 13 | df-nn 12187 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
| 14 | df-ima 5651 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 15 | 13, 14 | eqtri 2752 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
| 16 | 12, 15 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
| 17 | 9, 16 | eqeltrrd 2829 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
| 18 | oveq1 7394 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
| 19 | 18 | eleq1d 2813 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
| 20 | 17, 19 | syl5ibcom 245 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
| 21 | 20 | rexlimiv 3127 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
| 22 | 3, 21 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
| 23 | 22, 15 | eleq2s 2846 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ↦ cmpt 5188 ran crn 5639 ↾ cres 5640 “ cima 5641 suc csuc 6334 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ωcom 7842 reccrdg 8377 1c1 11069 + caddc 11071 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: dfnn2 12199 dfnn3 12200 peano2nnd 12203 nnind 12204 nnaddcl 12209 2nn 12259 3nn 12265 4nn 12269 5nn 12272 6nn 12275 7nn 12278 8nn 12281 9nn 12284 nnunb 12438 nneo 12618 10nn 12665 fzonn0p1p1 13705 ser1const 14023 expp1 14033 facp1 14243 relexpsucnnl 14996 isercolllem1 15631 isercoll2 15635 climcndslem2 15816 climcnds 15817 harmonic 15825 trireciplem 15828 trirecip 15829 rpnnen2lem9 16190 sqrt2irr 16217 nno 16352 nnoddm1d2 16356 rplpwr 16528 prmind2 16655 eulerthlem2 16752 pcmpt 16863 pockthi 16878 prmreclem6 16892 dec5nprm 17037 mulgnnp1 19014 chfacfisf 22741 chfacfisfcpmat 22742 cayhamlem1 22753 1stcfb 23332 bcthlem3 25226 bcthlem4 25227 ovolunlem1a 25397 ovolicc2lem4 25421 voliunlem1 25451 volsup 25457 volsup2 25506 itg1climres 25615 mbfi1fseqlem5 25620 itg2monolem1 25651 itg2i1fseqle 25655 itg2i1fseq 25656 itg2i1fseq2 25657 itg2addlem 25659 itg2gt0 25661 itg2cnlem1 25662 aaliou3lem7 26257 emcllem1 26906 emcllem2 26907 emcllem3 26908 emcllem5 26910 emcllem6 26911 emcllem7 26912 zetacvg 26925 lgam1 26974 bclbnd 27191 bposlem5 27199 2sqlem10 27339 dchrisumlem2 27401 logdivbnd 27467 pntrsumo1 27476 pntrsumbnd 27477 wwlksext2clwwlk 29986 numclwwlk2lem1 30305 numclwlk2lem2f 30306 opsqrlem5 32073 opsqrlem6 32074 nnindf 32744 psgnfzto1st 33062 esumpmono 34069 fibp1 34392 rrvsum 34445 subfacp1lem6 35172 subfaclim 35175 bcprod 35725 bccolsum 35726 iprodgam 35729 faclimlem1 35730 faclimlem2 35731 faclim2 35735 nn0prpwlem 36310 mblfinlem2 37652 volsupnfl 37659 seqpo 37741 incsequz 37742 incsequz2 37743 geomcau 37753 heiborlem6 37810 bfplem1 37816 fimgmcyc 42522 fsuppind 42578 jm2.27dlem4 43001 nnsplit 45354 sumnnodd 45628 stoweidlem20 46018 wallispilem4 46066 wallispi2lem1 46069 wallispi2lem2 46070 stirlinglem4 46075 stirlinglem8 46079 stirlinglem11 46082 stirlinglem12 46083 stirlinglem13 46084 vonioolem2 46679 vonicclem2 46682 deccarry 47309 iccpartres 47416 iccelpart 47431 odz2prm2pw 47561 fmtnoprmfac1 47563 fmtnoprmfac2 47565 lighneallem4 47608 |
| Copyright terms: Public domain | W3C validator |