| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8454 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
| 2 | fvelrnb 6944 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
| 4 | ovex 7443 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
| 5 | eqid 2736 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 6 | oveq1 7417 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
| 7 | oveq1 7417 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
| 8 | 5, 6, 7 | frsucmpt2 8459 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 9 | 4, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 10 | peano2 7891 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 11 | fnfvelrn 7075 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
| 12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
| 13 | df-nn 12246 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
| 14 | df-ima 5672 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 15 | 13, 14 | eqtri 2759 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
| 16 | 12, 15 | eleqtrrdi 2846 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
| 17 | 9, 16 | eqeltrrd 2836 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
| 18 | oveq1 7417 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
| 19 | 18 | eleq1d 2820 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
| 20 | 17, 19 | syl5ibcom 245 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
| 21 | 20 | rexlimiv 3135 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
| 22 | 3, 21 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
| 23 | 22, 15 | eleq2s 2853 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 ↦ cmpt 5206 ran crn 5660 ↾ cres 5661 “ cima 5662 suc csuc 6359 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 ωcom 7866 reccrdg 8428 1c1 11135 + caddc 11137 ℕcn 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 |
| This theorem is referenced by: dfnn2 12258 dfnn3 12259 peano2nnd 12262 nnind 12263 nnaddcl 12268 2nn 12318 3nn 12324 4nn 12328 5nn 12331 6nn 12334 7nn 12337 8nn 12340 9nn 12343 nnunb 12502 nneo 12682 10nn 12729 fzonn0p1p1 13765 ser1const 14081 expp1 14091 facp1 14301 relexpsucnnl 15054 isercolllem1 15686 isercoll2 15690 climcndslem2 15871 climcnds 15872 harmonic 15880 trireciplem 15883 trirecip 15884 rpnnen2lem9 16245 sqrt2irr 16272 nno 16406 nnoddm1d2 16410 rplpwr 16582 prmind2 16709 eulerthlem2 16806 pcmpt 16917 pockthi 16932 prmreclem6 16946 dec5nprm 17091 mulgnnp1 19070 chfacfisf 22797 chfacfisfcpmat 22798 cayhamlem1 22809 1stcfb 23388 bcthlem3 25283 bcthlem4 25284 ovolunlem1a 25454 ovolicc2lem4 25478 voliunlem1 25508 volsup 25514 volsup2 25563 itg1climres 25672 mbfi1fseqlem5 25677 itg2monolem1 25708 itg2i1fseqle 25712 itg2i1fseq 25713 itg2i1fseq2 25714 itg2addlem 25716 itg2gt0 25718 itg2cnlem1 25719 aaliou3lem7 26314 emcllem1 26963 emcllem2 26964 emcllem3 26965 emcllem5 26967 emcllem6 26968 emcllem7 26969 zetacvg 26982 lgam1 27031 bclbnd 27248 bposlem5 27256 2sqlem10 27396 dchrisumlem2 27458 logdivbnd 27524 pntrsumo1 27533 pntrsumbnd 27534 wwlksext2clwwlk 30043 numclwwlk2lem1 30362 numclwlk2lem2f 30363 opsqrlem5 32130 opsqrlem6 32131 nnindf 32803 psgnfzto1st 33121 esumpmono 34115 fibp1 34438 rrvsum 34491 subfacp1lem6 35212 subfaclim 35215 bcprod 35760 bccolsum 35761 iprodgam 35764 faclimlem1 35765 faclimlem2 35766 faclim2 35770 nn0prpwlem 36345 mblfinlem2 37687 volsupnfl 37694 seqpo 37776 incsequz 37777 incsequz2 37778 geomcau 37788 heiborlem6 37845 bfplem1 37851 fimgmcyc 42524 fsuppind 42580 jm2.27dlem4 43003 nnsplit 45352 sumnnodd 45626 stoweidlem20 46016 wallispilem4 46064 wallispi2lem1 46067 wallispi2lem2 46068 stirlinglem4 46073 stirlinglem8 46077 stirlinglem11 46080 stirlinglem12 46081 stirlinglem13 46082 vonioolem2 46677 vonicclem2 46680 deccarry 47307 iccpartres 47399 iccelpart 47414 odz2prm2pw 47544 fmtnoprmfac1 47546 fmtnoprmfac2 47548 lighneallem4 47591 |
| Copyright terms: Public domain | W3C validator |