| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8349 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
| 2 | fvelrnb 6877 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
| 4 | ovex 7374 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
| 5 | eqid 2731 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 6 | oveq1 7348 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
| 7 | oveq1 7348 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
| 8 | 5, 6, 7 | frsucmpt2 8354 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 9 | 4, 8 | mpan2 691 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
| 10 | peano2 7815 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 11 | fnfvelrn 7008 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
| 12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
| 13 | df-nn 12121 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
| 14 | df-ima 5624 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
| 15 | 13, 14 | eqtri 2754 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
| 16 | 12, 15 | eleqtrrdi 2842 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
| 17 | 9, 16 | eqeltrrd 2832 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
| 18 | oveq1 7348 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
| 19 | 18 | eleq1d 2816 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
| 20 | 17, 19 | syl5ibcom 245 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
| 21 | 20 | rexlimiv 3126 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
| 22 | 3, 21 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
| 23 | 22, 15 | eleq2s 2849 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ↦ cmpt 5167 ran crn 5612 ↾ cres 5613 “ cima 5614 suc csuc 6303 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ωcom 7791 reccrdg 8323 1c1 11002 + caddc 11004 ℕcn 12120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 |
| This theorem is referenced by: dfnn2 12133 dfnn3 12134 peano2nnd 12137 nnind 12138 nnaddcl 12143 2nn 12193 3nn 12199 4nn 12203 5nn 12206 6nn 12209 7nn 12212 8nn 12215 9nn 12218 nnunb 12372 nneo 12552 10nn 12599 fzonn0p1p1 13639 ser1const 13960 expp1 13970 facp1 14180 relexpsucnnl 14932 isercolllem1 15567 isercoll2 15571 climcndslem2 15752 climcnds 15753 harmonic 15761 trireciplem 15764 trirecip 15765 rpnnen2lem9 16126 sqrt2irr 16153 nno 16288 nnoddm1d2 16292 rplpwr 16464 prmind2 16591 eulerthlem2 16688 pcmpt 16799 pockthi 16814 prmreclem6 16828 dec5nprm 16973 mulgnnp1 18990 chfacfisf 22764 chfacfisfcpmat 22765 cayhamlem1 22776 1stcfb 23355 bcthlem3 25248 bcthlem4 25249 ovolunlem1a 25419 ovolicc2lem4 25443 voliunlem1 25473 volsup 25479 volsup2 25528 itg1climres 25637 mbfi1fseqlem5 25642 itg2monolem1 25673 itg2i1fseqle 25677 itg2i1fseq 25678 itg2i1fseq2 25679 itg2addlem 25681 itg2gt0 25683 itg2cnlem1 25684 aaliou3lem7 26279 emcllem1 26928 emcllem2 26929 emcllem3 26930 emcllem5 26932 emcllem6 26933 emcllem7 26934 zetacvg 26947 lgam1 26996 bclbnd 27213 bposlem5 27221 2sqlem10 27361 dchrisumlem2 27423 logdivbnd 27489 pntrsumo1 27498 pntrsumbnd 27499 wwlksext2clwwlk 30029 numclwwlk2lem1 30348 numclwlk2lem2f 30349 opsqrlem5 32116 opsqrlem6 32117 nnindf 32794 psgnfzto1st 33066 esumpmono 34084 fibp1 34406 rrvsum 34459 subfacp1lem6 35221 subfaclim 35224 bcprod 35774 bccolsum 35775 iprodgam 35778 faclimlem1 35779 faclimlem2 35780 faclim2 35784 nn0prpwlem 36356 mblfinlem2 37698 volsupnfl 37705 seqpo 37787 incsequz 37788 incsequz2 37789 geomcau 37799 heiborlem6 37856 bfplem1 37862 fimgmcyc 42567 fsuppind 42623 jm2.27dlem4 43045 nnsplit 45397 sumnnodd 45670 stoweidlem20 46058 wallispilem4 46106 wallispi2lem1 46109 wallispi2lem2 46110 stirlinglem4 46115 stirlinglem8 46119 stirlinglem11 46122 stirlinglem12 46123 stirlinglem13 46124 vonioolem2 46719 vonicclem2 46722 deccarry 47342 iccpartres 47449 iccelpart 47464 odz2prm2pw 47594 fmtnoprmfac1 47596 fmtnoprmfac2 47598 lighneallem4 47641 |
| Copyright terms: Public domain | W3C validator |