Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8236 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
2 | fvelrnb 6812 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
4 | ovex 7288 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
5 | eqid 2738 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
6 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
7 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
8 | 5, 6, 7 | frsucmpt2 8241 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
9 | 4, 8 | mpan2 687 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
10 | peano2 7711 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
11 | fnfvelrn 6940 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
12 | 1, 10, 11 | sylancr 586 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
13 | df-nn 11904 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
14 | df-ima 5593 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
15 | 13, 14 | eqtri 2766 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
16 | 12, 15 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
17 | 9, 16 | eqeltrrd 2840 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
18 | oveq1 7262 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
19 | 18 | eleq1d 2823 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
20 | 17, 19 | syl5ibcom 244 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
21 | 20 | rexlimiv 3208 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
22 | 3, 21 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
23 | 22, 15 | eleq2s 2857 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 “ cima 5583 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ωcom 7687 reccrdg 8211 1c1 10803 + caddc 10805 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: dfnn2 11916 dfnn3 11917 peano2nnd 11920 nnind 11921 nnaddcl 11926 2nn 11976 3nn 11982 4nn 11986 5nn 11989 6nn 11992 7nn 11995 8nn 11998 9nn 12001 nnunb 12159 nneo 12334 10nn 12382 fzonn0p1p1 13394 ser1const 13707 expp1 13717 facp1 13920 relexpsucnnl 14669 isercolllem1 15304 isercoll2 15308 climcndslem2 15490 climcnds 15491 harmonic 15499 trireciplem 15502 trirecip 15503 rpnnen2lem9 15859 sqrt2irr 15886 nno 16019 nnoddm1d2 16023 rplpwr 16195 prmind2 16318 eulerthlem2 16411 pcmpt 16521 pockthi 16536 prmreclem6 16550 dec5nprm 16695 mulgnnp1 18627 chfacfisf 21911 chfacfisfcpmat 21912 cayhamlem1 21923 1stcfb 22504 bcthlem3 24395 bcthlem4 24396 ovolunlem1a 24565 ovolicc2lem4 24589 voliunlem1 24619 volsup 24625 volsup2 24674 itg1climres 24784 mbfi1fseqlem5 24789 itg2monolem1 24820 itg2i1fseqle 24824 itg2i1fseq 24825 itg2i1fseq2 24826 itg2addlem 24828 itg2gt0 24830 itg2cnlem1 24831 aaliou3lem7 25414 emcllem1 26050 emcllem2 26051 emcllem3 26052 emcllem5 26054 emcllem6 26055 emcllem7 26056 zetacvg 26069 lgam1 26118 bclbnd 26333 bposlem5 26341 2sqlem10 26481 dchrisumlem2 26543 logdivbnd 26609 pntrsumo1 26618 pntrsumbnd 26619 wwlksext2clwwlk 28322 numclwwlk2lem1 28641 numclwlk2lem2f 28642 opsqrlem5 30407 opsqrlem6 30408 nnindf 31035 psgnfzto1st 31274 esumpmono 31947 fibp1 32268 rrvsum 32321 subfacp1lem6 33047 subfaclim 33050 bcprod 33610 bccolsum 33611 iprodgam 33614 faclimlem1 33615 faclimlem2 33616 faclim2 33620 nn0prpwlem 34438 mblfinlem2 35742 volsupnfl 35749 seqpo 35832 incsequz 35833 incsequz2 35834 geomcau 35844 heiborlem6 35901 bfplem1 35907 fsuppind 40202 jm2.27dlem4 40750 nnsplit 42787 sumnnodd 43061 stoweidlem20 43451 wallispilem4 43499 wallispi2lem1 43502 wallispi2lem2 43503 stirlinglem4 43508 stirlinglem8 43512 stirlinglem11 43515 stirlinglem12 43516 stirlinglem13 43517 vonioolem2 44109 vonicclem2 44112 deccarry 44691 iccpartres 44758 iccelpart 44773 odz2prm2pw 44903 fmtnoprmfac1 44905 fmtnoprmfac2 44907 lighneallem4 44950 |
Copyright terms: Public domain | W3C validator |