MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2nn Structured version   Visualization version   GIF version

Theorem peano2nn 12226
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8437 . . . 4 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω
2 fvelrnb 6952 . . . 4 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴))
31, 2ax-mp 5 . . 3 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)
4 ovex 7444 . . . . . . 7 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V
5 eqid 2732 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
6 oveq1 7418 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
7 oveq1 7418 . . . . . . . 8 (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
85, 6, 7frsucmpt2 8442 . . . . . . 7 ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
94, 8mpan2 689 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1))
10 peano2 7883 . . . . . . . 8 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
11 fnfvelrn 7082 . . . . . . . 8 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
121, 10, 11sylancr 587 . . . . . . 7 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω))
13 df-nn 12215 . . . . . . . 8 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
14 df-ima 5689 . . . . . . . 8 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1513, 14eqtri 2760 . . . . . . 7 ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)
1612, 15eleqtrrdi 2844 . . . . . 6 (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ)
179, 16eqeltrrd 2834 . . . . 5 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ)
18 oveq1 7418 . . . . . 6 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1))
1918eleq1d 2818 . . . . 5 (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ))
2017, 19syl5ibcom 244 . . . 4 (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ))
2120rexlimiv 3148 . . 3 (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)
223, 21sylbi 216 . 2 (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ)
2322, 15eleq2s 2851 1 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  cmpt 5231  ran crn 5677  cres 5678  cima 5679  suc csuc 6366   Fn wfn 6538  cfv 6543  (class class class)co 7411  ωcom 7857  reccrdg 8411  1c1 11113   + caddc 11115  cn 12214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-nn 12215
This theorem is referenced by:  dfnn2  12227  dfnn3  12228  peano2nnd  12231  nnind  12232  nnaddcl  12237  2nn  12287  3nn  12293  4nn  12297  5nn  12300  6nn  12303  7nn  12306  8nn  12309  9nn  12312  nnunb  12470  nneo  12648  10nn  12695  fzonn0p1p1  13713  ser1const  14026  expp1  14036  facp1  14240  relexpsucnnl  14979  isercolllem1  15613  isercoll2  15617  climcndslem2  15798  climcnds  15799  harmonic  15807  trireciplem  15810  trirecip  15811  rpnnen2lem9  16167  sqrt2irr  16194  nno  16327  nnoddm1d2  16331  rplpwr  16501  prmind2  16624  eulerthlem2  16717  pcmpt  16827  pockthi  16842  prmreclem6  16856  dec5nprm  17001  mulgnnp1  18964  chfacfisf  22363  chfacfisfcpmat  22364  cayhamlem1  22375  1stcfb  22956  bcthlem3  24850  bcthlem4  24851  ovolunlem1a  25020  ovolicc2lem4  25044  voliunlem1  25074  volsup  25080  volsup2  25129  itg1climres  25239  mbfi1fseqlem5  25244  itg2monolem1  25275  itg2i1fseqle  25279  itg2i1fseq  25280  itg2i1fseq2  25281  itg2addlem  25283  itg2gt0  25285  itg2cnlem1  25286  aaliou3lem7  25869  emcllem1  26507  emcllem2  26508  emcllem3  26509  emcllem5  26511  emcllem6  26512  emcllem7  26513  zetacvg  26526  lgam1  26575  bclbnd  26790  bposlem5  26798  2sqlem10  26938  dchrisumlem2  27000  logdivbnd  27066  pntrsumo1  27075  pntrsumbnd  27076  wwlksext2clwwlk  29348  numclwwlk2lem1  29667  numclwlk2lem2f  29668  opsqrlem5  31435  opsqrlem6  31436  nnindf  32063  psgnfzto1st  32305  esumpmono  33146  fibp1  33469  rrvsum  33522  subfacp1lem6  34245  subfaclim  34248  bcprod  34777  bccolsum  34778  iprodgam  34781  faclimlem1  34782  faclimlem2  34783  faclim2  34787  nn0prpwlem  35293  mblfinlem2  36612  volsupnfl  36619  seqpo  36701  incsequz  36702  incsequz2  36703  geomcau  36713  heiborlem6  36770  bfplem1  36776  fsuppind  41244  jm2.27dlem4  41833  nnsplit  44147  sumnnodd  44425  stoweidlem20  44815  wallispilem4  44863  wallispi2lem1  44866  wallispi2lem2  44867  stirlinglem4  44872  stirlinglem8  44876  stirlinglem11  44879  stirlinglem12  44880  stirlinglem13  44881  vonioolem2  45476  vonicclem2  45479  deccarry  46098  iccpartres  46165  iccelpart  46180  odz2prm2pw  46310  fmtnoprmfac1  46312  fmtnoprmfac2  46314  lighneallem4  46357
  Copyright terms: Public domain W3C validator