![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > peano2nn | Structured version Visualization version GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano2nn | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8437 | . . . 4 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω | |
2 | fvelrnb 6952 | . . . 4 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω → (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) ↔ ∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴) |
4 | ovex 7444 | . . . . . . 7 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V | |
5 | eqid 2732 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
6 | oveq1 7418 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1)) | |
7 | oveq1 7418 | . . . . . . . 8 ⊢ (𝑧 = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) → (𝑧 + 1) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) | |
8 | 5, 6, 7 | frsucmpt2 8442 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ V) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
9 | 4, 8 | mpan2 689 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1)) |
10 | peano2 7883 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
11 | fnfvelrn 7082 | . . . . . . . 8 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) Fn ω ∧ suc 𝑦 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) | |
12 | 1, 10, 11 | sylancr 587 | . . . . . . 7 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)) |
13 | df-nn 12215 | . . . . . . . 8 ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) | |
14 | df-ima 5689 | . . . . . . . 8 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) | |
15 | 13, 14 | eqtri 2760 | . . . . . . 7 ⊢ ℕ = ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) |
16 | 12, 15 | eleqtrrdi 2844 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘suc 𝑦) ∈ ℕ) |
17 | 9, 16 | eqeltrrd 2834 | . . . . 5 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ) |
18 | oveq1 7418 | . . . . . 6 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) = (𝐴 + 1)) | |
19 | 18 | eleq1d 2818 | . . . . 5 ⊢ (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → ((((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) + 1) ∈ ℕ ↔ (𝐴 + 1) ∈ ℕ)) |
20 | 17, 19 | syl5ibcom 244 | . . . 4 ⊢ (𝑦 ∈ ω → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ)) |
21 | 20 | rexlimiv 3148 | . . 3 ⊢ (∃𝑦 ∈ ω ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω)‘𝑦) = 𝐴 → (𝐴 + 1) ∈ ℕ) |
22 | 3, 21 | sylbi 216 | . 2 ⊢ (𝐴 ∈ ran (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ↾ ω) → (𝐴 + 1) ∈ ℕ) |
23 | 22, 15 | eleq2s 2851 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 “ cima 5679 suc csuc 6366 Fn wfn 6538 ‘cfv 6543 (class class class)co 7411 ωcom 7857 reccrdg 8411 1c1 11113 + caddc 11115 ℕcn 12214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12215 |
This theorem is referenced by: dfnn2 12227 dfnn3 12228 peano2nnd 12231 nnind 12232 nnaddcl 12237 2nn 12287 3nn 12293 4nn 12297 5nn 12300 6nn 12303 7nn 12306 8nn 12309 9nn 12312 nnunb 12470 nneo 12648 10nn 12695 fzonn0p1p1 13713 ser1const 14026 expp1 14036 facp1 14240 relexpsucnnl 14979 isercolllem1 15613 isercoll2 15617 climcndslem2 15798 climcnds 15799 harmonic 15807 trireciplem 15810 trirecip 15811 rpnnen2lem9 16167 sqrt2irr 16194 nno 16327 nnoddm1d2 16331 rplpwr 16501 prmind2 16624 eulerthlem2 16717 pcmpt 16827 pockthi 16842 prmreclem6 16856 dec5nprm 17001 mulgnnp1 18964 chfacfisf 22363 chfacfisfcpmat 22364 cayhamlem1 22375 1stcfb 22956 bcthlem3 24850 bcthlem4 24851 ovolunlem1a 25020 ovolicc2lem4 25044 voliunlem1 25074 volsup 25080 volsup2 25129 itg1climres 25239 mbfi1fseqlem5 25244 itg2monolem1 25275 itg2i1fseqle 25279 itg2i1fseq 25280 itg2i1fseq2 25281 itg2addlem 25283 itg2gt0 25285 itg2cnlem1 25286 aaliou3lem7 25869 emcllem1 26507 emcllem2 26508 emcllem3 26509 emcllem5 26511 emcllem6 26512 emcllem7 26513 zetacvg 26526 lgam1 26575 bclbnd 26790 bposlem5 26798 2sqlem10 26938 dchrisumlem2 27000 logdivbnd 27066 pntrsumo1 27075 pntrsumbnd 27076 wwlksext2clwwlk 29348 numclwwlk2lem1 29667 numclwlk2lem2f 29668 opsqrlem5 31435 opsqrlem6 31436 nnindf 32063 psgnfzto1st 32305 esumpmono 33146 fibp1 33469 rrvsum 33522 subfacp1lem6 34245 subfaclim 34248 bcprod 34777 bccolsum 34778 iprodgam 34781 faclimlem1 34782 faclimlem2 34783 faclim2 34787 nn0prpwlem 35293 mblfinlem2 36612 volsupnfl 36619 seqpo 36701 incsequz 36702 incsequz2 36703 geomcau 36713 heiborlem6 36770 bfplem1 36776 fsuppind 41244 jm2.27dlem4 41833 nnsplit 44147 sumnnodd 44425 stoweidlem20 44815 wallispilem4 44863 wallispi2lem1 44866 wallispi2lem2 44867 stirlinglem4 44872 stirlinglem8 44876 stirlinglem11 44879 stirlinglem12 44880 stirlinglem13 44881 vonioolem2 45476 vonicclem2 45479 deccarry 46098 iccpartres 46165 iccelpart 46180 odz2prm2pw 46310 fmtnoprmfac1 46312 fmtnoprmfac2 46314 lighneallem4 46357 |
Copyright terms: Public domain | W3C validator |