MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnexALT Structured version   Visualization version   GIF version

Theorem nnexALT 11440
Description: Alternate proof of nnex 11445, more direct, that makes use of ax-rep 5046. (Contributed by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nnexALT ℕ ∈ V

Proof of Theorem nnexALT
StepHypRef Expression
1 df-nn 11439 . 2 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
2 rdgfun 7855 . . 3 Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1)
3 omex 8899 . . 3 ω ∈ V
4 funimaexg 6271 . . 3 ((Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ∧ ω ∈ V) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V)
52, 3, 4mp2an 680 . 2 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V
61, 5eqeltri 2857 1 ℕ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2051  Vcvv 3410  cmpt 5005  cima 5407  Fun wfun 6180  (class class class)co 6975  ωcom 7395  reccrdg 7848  1c1 10335   + caddc 10337  cn 11438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-om 7396  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-nn 11439
This theorem is referenced by:  zexALT  11812  qexALT  12177  reexALT  12197
  Copyright terms: Public domain W3C validator