MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnexALT Structured version   Visualization version   GIF version

Theorem nnexALT 11276
Description: Alternate proof of nnex 11281, more direct, that makes use of ax-rep 4930. (Contributed by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nnexALT ℕ ∈ V

Proof of Theorem nnexALT
StepHypRef Expression
1 df-nn 11275 . 2 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
2 rdgfun 7716 . . 3 Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1)
3 omex 8755 . . 3 ω ∈ V
4 funimaexg 6153 . . 3 ((Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ∧ ω ∈ V) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V)
52, 3, 4mp2an 683 . 2 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V
61, 5eqeltri 2840 1 ℕ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2155  Vcvv 3350  cmpt 4888  cima 5280  Fun wfun 6062  (class class class)co 6842  ωcom 7263  reccrdg 7709  1c1 10190   + caddc 10192  cn 11274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-nn 11275
This theorem is referenced by:  zexALT  11643  qexALT  12004  reexALT  12022
  Copyright terms: Public domain W3C validator