MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnexALT Structured version   Visualization version   GIF version

Theorem nnexALT 12164
Description: Alternate proof of nnex 12168, more direct, that makes use of ax-rep 5229. (Contributed by Mario Carneiro, 3-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nnexALT ℕ ∈ V

Proof of Theorem nnexALT
StepHypRef Expression
1 df-nn 12163 . 2 ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
2 rdgfun 8361 . . 3 Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1)
3 omex 9572 . . 3 ω ∈ V
4 funimaexg 6587 . . 3 ((Fun rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) ∧ ω ∈ V) → (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V)
52, 3, 4mp2an 692 . 2 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω) ∈ V
61, 5eqeltri 2824 1 ℕ ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  cmpt 5183  cima 5634  Fun wfun 6493  (class class class)co 7369  ωcom 7822  reccrdg 8354  1c1 11045   + caddc 11047  cn 12162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163
This theorem is referenced by:  zexALT  12525  qexALT  12899  reexALT  12919
  Copyright terms: Public domain W3C validator