Home | Metamath
Proof Explorer Theorem List (p. 123 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nn0mulcli 12201 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑀 · 𝑁) ∈ ℕ0 | ||
Theorem | nn0p1nn 12202 | A nonnegative integer plus 1 is a positive integer. Strengthening of peano2nn 11915. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ) | ||
Theorem | peano2nn0 12203 | Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | ||
Theorem | nnm1nn0 12204 | A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | ||
Theorem | elnn0nn 12205 | The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ)) | ||
Theorem | elnnnn0 12206 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | ||
Theorem | elnnnn0b 12207 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 0 < 𝑁)) | ||
Theorem | elnnnn0c 12208 | The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | ||
Theorem | nn0addge1 12209 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝐴 + 𝑁)) | ||
Theorem | nn0addge2 12210 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝐴 ≤ (𝑁 + 𝐴)) | ||
Theorem | nn0addge1i 12211 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝐴 + 𝑁) | ||
Theorem | nn0addge2i 12212 | A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝐴 ≤ (𝑁 + 𝐴) | ||
Theorem | nn0sub 12213 | Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | ltsubnn0 12214 | Subtracting a nonnegative integer from a nonnegative integer which is greater than the first one results in a nonnegative integer. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐵 < 𝐴 → (𝐴 − 𝐵) ∈ ℕ0)) | ||
Theorem | nn0negleid 12215 | A nonnegative integer is greater than or equal to its negative. (Contributed by AV, 13-Aug-2021.) |
⊢ (𝐴 ∈ ℕ0 → -𝐴 ≤ 𝐴) | ||
Theorem | difgtsumgt 12216 | If the difference of a real number and a nonnegative integer is greater than another real number, the sum of the real number and the nonnegative integer is also greater than the other real number. (Contributed by AV, 13-Aug-2021.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℝ) → (𝐶 < (𝐴 − 𝐵) → 𝐶 < (𝐴 + 𝐵))) | ||
Theorem | nn0le2xi 12217 | A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ≤ (2 · 𝑁) | ||
Theorem | nn0lele2xi 12218 | 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝑀 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ (𝑁 ≤ 𝑀 → 𝑁 ≤ (2 · 𝑀)) | ||
Theorem | frnnn0supp 12219 | Two ways to write the support of a function on ℕ0. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by AV, 7-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
Theorem | frnnn0fsupp 12220 | A function on ℕ0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019.) |
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
Theorem | frnnn0suppg 12221 | Version of frnnn0supp 12219 avoiding ax-rep 5205 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | ||
Theorem | frnnn0fsuppg 12222 | Version of frnnn0fsupp 12220 avoiding ax-rep 5205 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | ||
Theorem | nnnn0d 12223 | A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0) | ||
Theorem | nn0red 12224 | A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | nn0cnd 12225 | A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | nn0ge0d 12226 | A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 0 ≤ 𝐴) | ||
Theorem | nn0addcld 12227 | Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ0) | ||
Theorem | nn0mulcld 12228 | Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) & ⊢ (𝜑 → 𝐵 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ0) | ||
Theorem | nn0readdcl 12229 | Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | nn0n0n1ge2 12230 | A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | ||
Theorem | nn0n0n1ge2b 12231 | A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) | ||
Theorem | nn0ge2m1nn 12232 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ) | ||
Theorem | nn0ge2m1nn0 12233 | If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) |
⊢ ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ0) | ||
Theorem | nn0nndivcl 12234 | Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | ||
The function values of the hash (set size) function are either nonnegative integers or positive infinity, see hashf 13980. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 10944. The definition of extended nonnegative integers can be used in Ramsey theory, because the Ramsey number is either a nonnegative integer or plus infinity, see ramcl2 16645, or for the degree of polynomials, see mdegcl 25139, or for the degree of vertices in graph theory, see vtxdgf 27741. | ||
Syntax | cxnn0 12235 | The set of extended nonnegative integers. |
class ℕ0* | ||
Definition | df-xnn0 12236 | Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 10944. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0* = (ℕ0 ∪ {+∞}) | ||
Theorem | elxnn0 12237 | An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | ||
Theorem | nn0ssxnn0 12238 | The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.) |
⊢ ℕ0 ⊆ ℕ0* | ||
Theorem | nn0xnn0 12239 | A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) | ||
Theorem | xnn0xr 12240 | An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) | ||
Theorem | 0xnn0 12241 | Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ 0 ∈ ℕ0* | ||
Theorem | pnf0xnn0 12242 | Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
⊢ +∞ ∈ ℕ0* | ||
Theorem | nn0nepnf 12243 | No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | ||
Theorem | nn0xnn0d 12244 | A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℕ0*) | ||
Theorem | nn0nepnfd 12245 | No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
Theorem | xnn0nemnf 12246 | No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → 𝐴 ≠ -∞) | ||
Theorem | xnn0xrnemnf 12247 | The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) | ||
Theorem | xnn0nnn0pnf 12248 | An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | ||
Syntax | cz 12249 | Extend class notation to include the class of integers. |
class ℤ | ||
Definition | df-z 12250 | Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) |
⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | ||
Theorem | elz 12251 | Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | ||
Theorem | nnnegz 12252 | The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝑁 ∈ ℕ → -𝑁 ∈ ℤ) | ||
Theorem | zre 12253 | An integer is a real. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | ||
Theorem | zcn 12254 | An integer is a complex number. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | ||
Theorem | zrei 12255 | An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝐴 ∈ ℤ ⇒ ⊢ 𝐴 ∈ ℝ | ||
Theorem | zssre 12256 | The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℝ | ||
Theorem | zsscn 12257 | The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
⊢ ℤ ⊆ ℂ | ||
Theorem | zex 12258 | The set of integers exists. See also zexALT 12269. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ ℤ ∈ V | ||
Theorem | elnnz 12259 | Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁)) | ||
Theorem | 0z 12260 | Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
⊢ 0 ∈ ℤ | ||
Theorem | 0zd 12261 | Zero is an integer, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ (𝜑 → 0 ∈ ℤ) | ||
Theorem | elnn0z 12262 | Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | ||
Theorem | elznn0nn 12263 | Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | ||
Theorem | elznn0 12264 | Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | elznn 12265 | Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.) |
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ0))) | ||
Theorem | zle0orge1 12266 | There is no integer in the open unit interval, i.e., an integer is either less than or equal to 0 or greater than or equal to 1. (Contributed by AV, 4-Jun-2023.) |
⊢ (𝑍 ∈ ℤ → (𝑍 ≤ 0 ∨ 1 ≤ 𝑍)) | ||
Theorem | elz2 12267* | Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑁 = (𝑥 − 𝑦)) | ||
Theorem | dfz2 12268 | Alternative definition of the integers, based on elz2 12267. (Contributed by Mario Carneiro, 16-May-2014.) |
⊢ ℤ = ( − “ (ℕ × ℕ)) | ||
Theorem | zexALT 12269 | Alternate proof of zex 12258. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℤ ∈ V | ||
Theorem | nnssz 12270 | Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022.) |
⊢ ℕ ⊆ ℤ | ||
Theorem | nn0ssz 12271 | Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
⊢ ℕ0 ⊆ ℤ | ||
Theorem | nnz 12272 | A positive integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | ||
Theorem | nn0z 12273 | A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | ||
Theorem | nnzi 12274 | A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | nn0zi 12275 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ 𝑁 ∈ ℤ | ||
Theorem | elnnz1 12276 | Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 1 ≤ 𝑁)) | ||
Theorem | znnnlt1 12277 | An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.) |
⊢ (𝑁 ∈ ℤ → (¬ 𝑁 ∈ ℕ ↔ 𝑁 < 1)) | ||
Theorem | nnzrab 12278 | Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ = {𝑥 ∈ ℤ ∣ 1 ≤ 𝑥} | ||
Theorem | nn0zrab 12279 | Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ℕ0 = {𝑥 ∈ ℤ ∣ 0 ≤ 𝑥} | ||
Theorem | 1z 12280 | One is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 1 ∈ ℤ | ||
Theorem | 1zzd 12281 | One is an integer, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
⊢ (𝜑 → 1 ∈ ℤ) | ||
Theorem | 2z 12282 | 2 is an integer. (Contributed by NM, 10-May-2004.) |
⊢ 2 ∈ ℤ | ||
Theorem | 3z 12283 | 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.) |
⊢ 3 ∈ ℤ | ||
Theorem | 4z 12284 | 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
⊢ 4 ∈ ℤ | ||
Theorem | znegcl 12285 | Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | ||
Theorem | neg1z 12286 | -1 is an integer. (Contributed by David A. Wheeler, 5-Dec-2018.) |
⊢ -1 ∈ ℤ | ||
Theorem | znegclb 12287 | A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℤ ↔ -𝐴 ∈ ℤ)) | ||
Theorem | nn0negz 12288 | The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
⊢ (𝑁 ∈ ℕ0 → -𝑁 ∈ ℤ) | ||
Theorem | nn0negzi 12289 | The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑁 ∈ ℕ0 ⇒ ⊢ -𝑁 ∈ ℤ | ||
Theorem | zaddcl 12290 | Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | ||
Theorem | peano2z 12291 | Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 + 1) ∈ ℤ) | ||
Theorem | zsubcl 12292 | Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | ||
Theorem | peano2zm 12293 | "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | ||
Theorem | zletr 12294 | Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.) |
⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐽 ≤ 𝐾 ∧ 𝐾 ≤ 𝐿) → 𝐽 ≤ 𝐿)) | ||
Theorem | zrevaddcl 12295 | Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) | ||
Theorem | znnsub 12296 | The positive difference of unequal integers is a positive integer. (Generalization of nnsub 11947.) (Contributed by NM, 11-May-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) | ||
Theorem | znn0sub 12297 | The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 12213.) (Contributed by NM, 14-Jul-2005.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ0)) | ||
Theorem | nzadd 12298 | The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021.) |
⊢ ((𝐴 ∈ (ℝ ∖ ℤ) ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ (ℝ ∖ ℤ)) | ||
Theorem | zmulcl 12299 | Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | ||
Theorem | zltp1le 12300 | Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |