| Metamath
Proof Explorer Theorem List (p. 123 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nnred 12201 | A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
| Theorem | nncnd 12202 | A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | peano2nnd 12203 | Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) | ||
| Theorem | nnind 12204* | Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12209 for an example of its use. See nn0ind 12629 for induction on nonnegative integers and uzind 12626, uzind4 12865 for induction on an arbitrary upper set of integers. See indstr 12875 for strong induction. See also nnindALT 12205. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindALT 12205* |
Principle of Mathematical Induction (inference schema). The last four
hypotheses give us the substitution instances we need; the first two are
the induction step and the basis.
This ALT version of nnind 12204 has a different hypothesis order. It may be easier to use with the Metamath program Proof Assistant, because "MM-PA> ASSIGN LAST" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> MINIMIZE_WITH nnind / MAYGROW". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜏) | ||
| Theorem | nnindd 12206* | Principle of Mathematical Induction (inference schema) on integers, a deduction version. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
| ⊢ (𝑥 = 1 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝜂) | ||
| Theorem | nn1m1nn 12207 | Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ)) | ||
| Theorem | nn1suc 12208* | If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜃)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ → 𝜒) ⇒ ⊢ (𝐴 ∈ ℕ → 𝜃) | ||
| Theorem | nnaddcl 12209 | Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcl 12210 | Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) Remove dependency on ax-mulcom 11132 and ax-mulass 11134. (Revised by Steven Nguyen, 24-Sep-2022.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcli 12211 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℕ | ||
| Theorem | nnmtmip 12212 | "Minus times minus is plus, The reason for this we need not discuss." (W. H. Auden, as quoted in M. Guillen "Bridges to Infinity", p. 64, see also Metamath Book, section 1.1.1, p. 5) This statement, formalized to "The product of two negative integers is a positive integer", is proved by the following theorem, therefore it actually need not be discussed anymore. "The reason for this" is that (-𝐴 · -𝐵) = (𝐴 · 𝐵) for all complex numbers 𝐴 and 𝐵 because of mul2neg 11617, 𝐴 and 𝐵 are complex numbers because of nncn 12194, and (𝐴 · 𝐵) ∈ ℕ because of nnmulcl 12210. This also holds for positive reals, see rpmtmip 12977. Note that the opposites -𝐴 and -𝐵 of the positive integers 𝐴 and 𝐵 are negative integers. (Contributed by AV, 23-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (-𝐴 · -𝐵) ∈ ℕ) | ||
| Theorem | nn2ge 12213* | There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) | ||
| Theorem | nnge1 12214 | A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | ||
| Theorem | nngt1ne1 12215 | A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.) |
| ⊢ (𝐴 ∈ ℕ → (1 < 𝐴 ↔ 𝐴 ≠ 1)) | ||
| Theorem | nnle1eq1 12216 | A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.) |
| ⊢ (𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1)) | ||
| Theorem | nngt0 12217 | A positive integer is positive. (Contributed by NM, 26-Sep-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | ||
| Theorem | nnnlt1 12218 | A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 < 1) | ||
| Theorem | nnnle0 12219 | A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020.) |
| ⊢ (𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0) | ||
| Theorem | nnne0 12220 | A positive integer is nonzero. See nnne0ALT 12224 for a shorter proof using ax-pre-mulgt0 11145. This proof avoids 0lt1 11700, and thus ax-pre-mulgt0 11145, by splitting ax-1ne0 11137 into the two separate cases 0 < 1 and 1 < 0. (Contributed by NM, 27-Sep-1999.) Remove dependency on ax-pre-mulgt0 11145. (Revised by Steven Nguyen, 30-Jan-2023.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nnneneg 12221 | No positive integer is equal to its negation. (Contributed by AV, 20-Jun-2023.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ -𝐴) | ||
| Theorem | 0nnn 12222 | Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.) Remove dependency on ax-pre-mulgt0 11145. (Revised by Steven Nguyen, 30-Jan-2023.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | 0nnnALT 12223 | Alternate proof of 0nnn 12222, which requires ax-pre-mulgt0 11145 but is not based on nnne0 12220 (and which can therefore be used in nnne0ALT 12224). (Contributed by NM, 25-Aug-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ¬ 0 ∈ ℕ | ||
| Theorem | nnne0ALT 12224 | Alternate version of nnne0 12220. A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) | ||
| Theorem | nngt0i 12225 | A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 0 < 𝐴 | ||
| Theorem | nnne0i 12226 | A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.) |
| ⊢ 𝐴 ∈ ℕ ⇒ ⊢ 𝐴 ≠ 0 | ||
| Theorem | nndivre 12227 | The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecre 12228 | The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.) |
| ⊢ (𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ) | ||
| Theorem | nnrecgt0 12229 | The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.) |
| ⊢ (𝐴 ∈ ℕ → 0 < (1 / 𝐴)) | ||
| Theorem | nnsub 12230 | Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) | ||
| Theorem | nnsubi 12231 | Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ) | ||
| Theorem | nndiv 12232* | Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ)) | ||
| Theorem | nndivtr 12233 | Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.) |
| ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ) | ||
| Theorem | nnge1d 12234 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 1 ≤ 𝐴) | ||
| Theorem | nngt0d 12235 | A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | nnne0d 12236 | A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ≠ 0) | ||
| Theorem | nnrecred 12237 | The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) | ||
| Theorem | nnaddcld 12238 | Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℕ) | ||
| Theorem | nnmulcld 12239 | Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) | ||
| Theorem | nndivred 12240 | A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) | ||
The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 11075 through df-9 12256), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 11075 and df-1 11076). With the decimal constructor df-dec 12650, it is possible to easily express larger integers in base 10. See deccl 12664 and the theorems that follow it. See also 4001prm 17115 (4001 is prime) and the proof of bpos 27204. Note that the decimal constructor builds on the definitions in this section. Note: The number 10 will be represented by its digits using the decimal constructor only, i.e., by ;10. Therefore, only decimal digits are needed (as symbols) for the decimal representation of a number. Integers can also be exhibited as sums of powers of 10 (e.g., the number 103 can be expressed as ((;10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2. Decimals can be expressed as ratios of integers, as in cos2bnd 16156. Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12. | ||
| Syntax | c2 12241 | Extend class notation to include the number 2. |
| class 2 | ||
| Syntax | c3 12242 | Extend class notation to include the number 3. |
| class 3 | ||
| Syntax | c4 12243 | Extend class notation to include the number 4. |
| class 4 | ||
| Syntax | c5 12244 | Extend class notation to include the number 5. |
| class 5 | ||
| Syntax | c6 12245 | Extend class notation to include the number 6. |
| class 6 | ||
| Syntax | c7 12246 | Extend class notation to include the number 7. |
| class 7 | ||
| Syntax | c8 12247 | Extend class notation to include the number 8. |
| class 8 | ||
| Syntax | c9 12248 | Extend class notation to include the number 9. |
| class 9 | ||
| Definition | df-2 12249 | Define the number 2. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 = (1 + 1) | ||
| Definition | df-3 12250 | Define the number 3. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 = (2 + 1) | ||
| Definition | df-4 12251 | Define the number 4. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 = (3 + 1) | ||
| Definition | df-5 12252 | Define the number 5. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 = (4 + 1) | ||
| Definition | df-6 12253 | Define the number 6. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 = (5 + 1) | ||
| Definition | df-7 12254 | Define the number 7. (Contributed by NM, 27-May-1999.) |
| ⊢ 7 = (6 + 1) | ||
| Definition | df-8 12255 | Define the number 8. (Contributed by NM, 27-May-1999.) |
| ⊢ 8 = (7 + 1) | ||
| Definition | df-9 12256 | Define the number 9. (Contributed by NM, 27-May-1999.) |
| ⊢ 9 = (8 + 1) | ||
| Theorem | 0ne1 12257 | Zero is different from one (the commuted form is Axiom ax-1ne0 11137). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 0 ≠ 1 | ||
| Theorem | 1m1e0 12258 | One minus one equals zero. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ (1 − 1) = 0 | ||
| Theorem | 2nn 12259 | 2 is a positive integer. (Contributed by NM, 20-Aug-2001.) |
| ⊢ 2 ∈ ℕ | ||
| Theorem | 2re 12260 | The number 2 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 2 ∈ ℝ | ||
| Theorem | 2cn 12261 | The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 2 ∈ ℂ | ||
| Theorem | 2cnALT 12262 | Alternate proof of 2cn 12261. Shorter but uses more axioms. Similar proofs are possible for 3cn 12267, ... , 9cn 12286. (Contributed by NM, 30-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 2 ∈ ℂ | ||
| Theorem | 2ex 12263 | The number 2 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 2 ∈ V | ||
| Theorem | 2cnd 12264 | The number 2 is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 2 ∈ ℂ) | ||
| Theorem | 3nn 12265 | 3 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| ⊢ 3 ∈ ℕ | ||
| Theorem | 3re 12266 | The number 3 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 3 ∈ ℝ | ||
| Theorem | 3cn 12267 | The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 3 ∈ ℂ | ||
| Theorem | 3ex 12268 | The number 3 is a set. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ 3 ∈ V | ||
| Theorem | 4nn 12269 | 4 is a positive integer. (Contributed by NM, 8-Jan-2006.) |
| ⊢ 4 ∈ ℕ | ||
| Theorem | 4re 12270 | The number 4 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 4 ∈ ℝ | ||
| Theorem | 4cn 12271 | The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 4 ∈ ℂ | ||
| Theorem | 5nn 12272 | 5 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 5 ∈ ℕ | ||
| Theorem | 5re 12273 | The number 5 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 5 ∈ ℝ | ||
| Theorem | 5cn 12274 | The number 5 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 5 ∈ ℂ | ||
| Theorem | 6nn 12275 | 6 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 6 ∈ ℕ | ||
| Theorem | 6re 12276 | The number 6 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 6 ∈ ℝ | ||
| Theorem | 6cn 12277 | The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 6 ∈ ℂ | ||
| Theorem | 7nn 12278 | 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 7 ∈ ℕ | ||
| Theorem | 7re 12279 | The number 7 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 7 ∈ ℝ | ||
| Theorem | 7cn 12280 | The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 7 ∈ ℂ | ||
| Theorem | 8nn 12281 | 8 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| ⊢ 8 ∈ ℕ | ||
| Theorem | 8re 12282 | The number 8 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 8 ∈ ℝ | ||
| Theorem | 8cn 12283 | The number 8 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 8 ∈ ℂ | ||
| Theorem | 9nn 12284 | 9 is a positive integer. (Contributed by NM, 21-Oct-2012.) |
| ⊢ 9 ∈ ℕ | ||
| Theorem | 9re 12285 | The number 9 is real. (Contributed by NM, 27-May-1999.) |
| ⊢ 9 ∈ ℝ | ||
| Theorem | 9cn 12286 | The number 9 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| ⊢ 9 ∈ ℂ | ||
| Theorem | 0le0 12287 | Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ≤ 0 | ||
| Theorem | 0le2 12288 | The number 0 is less than or equal to 2. (Contributed by David A. Wheeler, 7-Dec-2018.) |
| ⊢ 0 ≤ 2 | ||
| Theorem | 2pos 12289 | The number 2 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 2 | ||
| Theorem | 2ne0 12290 | The number 2 is nonzero. (Contributed by NM, 9-Nov-2007.) |
| ⊢ 2 ≠ 0 | ||
| Theorem | 3pos 12291 | The number 3 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 3 | ||
| Theorem | 3ne0 12292 | The number 3 is nonzero. (Contributed by FL, 17-Oct-2010.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| ⊢ 3 ≠ 0 | ||
| Theorem | 4pos 12293 | The number 4 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 4 | ||
| Theorem | 4ne0 12294 | The number 4 is nonzero. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| ⊢ 4 ≠ 0 | ||
| Theorem | 5pos 12295 | The number 5 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 5 | ||
| Theorem | 6pos 12296 | The number 6 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 6 | ||
| Theorem | 7pos 12297 | The number 7 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 7 | ||
| Theorem | 8pos 12298 | The number 8 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 8 | ||
| Theorem | 9pos 12299 | The number 9 is positive. (Contributed by NM, 27-May-1999.) |
| ⊢ 0 < 9 | ||
This section includes specific theorems about one-digit natural numbers (membership, addition, subtraction, multiplication, division, ordering). | ||
| Theorem | 1pneg1e0 12300 | 1 + -1 is 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (1 + -1) = 0 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |