MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn2 Structured version   Visualization version   GIF version

Theorem dfn2 12483
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
dfn2 ℕ = (ℕ0 ∖ {0})

Proof of Theorem dfn2
StepHypRef Expression
1 df-n0 12471 . . 3 0 = (ℕ ∪ {0})
21difeq1i 4111 . 2 (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0})
3 difun2 4473 . 2 ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0})
4 0nnn 12246 . . 3 ¬ 0 ∈ ℕ
5 difsn 4794 . . 3 (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ)
64, 5ax-mp 5 . 2 (ℕ ∖ {0}) = ℕ
72, 3, 63eqtrri 2757 1 ℕ = (ℕ0 ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  cdif 3938  cun 3939  {csn 4621  0cc0 11107  cn 12210  0cn0 12470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-nn 12211  df-n0 12471
This theorem is referenced by:  elnnne0  12484  fcdmnn0supp  12526  fcdmnn0fsupp  12527  fcdmnn0suppg  12528  facnn  14233  fac0  14234  ruclem4  16176  fzo0dvdseq  16265  domnchr  21393  mhpmulcl  22002  logexprlim  27077  eulerpartgbij  33863  eulerpartlemmf  33866  eulerpartlemgf  33870  dffltz  41890
  Copyright terms: Public domain W3C validator