MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn2 Structured version   Visualization version   GIF version

Theorem dfn2 11909
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
dfn2 ℕ = (ℕ0 ∖ {0})

Proof of Theorem dfn2
StepHypRef Expression
1 df-n0 11897 . . 3 0 = (ℕ ∪ {0})
21difeq1i 4081 . 2 (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0})
3 difun2 4412 . 2 ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0})
4 0nnn 11672 . . 3 ¬ 0 ∈ ℕ
5 difsn 4715 . . 3 (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ)
64, 5ax-mp 5 . 2 (ℕ ∖ {0}) = ℕ
72, 3, 63eqtrri 2852 1 ℕ = (ℕ0 ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2115  cdif 3916  cun 3917  {csn 4550  0cc0 10537  cn 11636  0cn0 11896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-nn 11637  df-n0 11897
This theorem is referenced by:  elnnne0  11910  frnnn0supp  11952  frnnn0fsupp  11953  facnn  13642  fac0  13643  ruclem4  15589  fzo0dvdseq  15675  domnchr  20233  logexprlim  25818  eulerpartgbij  31715  eulerpartlemmf  31718  eulerpartlemgf  31722
  Copyright terms: Public domain W3C validator