MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfn2 Structured version   Visualization version   GIF version

Theorem dfn2 12510
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
dfn2 ℕ = (ℕ0 ∖ {0})

Proof of Theorem dfn2
StepHypRef Expression
1 df-n0 12498 . . 3 0 = (ℕ ∪ {0})
21difeq1i 4115 . 2 (ℕ0 ∖ {0}) = ((ℕ ∪ {0}) ∖ {0})
3 difun2 4477 . 2 ((ℕ ∪ {0}) ∖ {0}) = (ℕ ∖ {0})
4 0nnn 12273 . . 3 ¬ 0 ∈ ℕ
5 difsn 4798 . . 3 (¬ 0 ∈ ℕ → (ℕ ∖ {0}) = ℕ)
64, 5ax-mp 5 . 2 (ℕ ∖ {0}) = ℕ
72, 3, 63eqtrri 2761 1 ℕ = (ℕ0 ∖ {0})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  cdif 3942  cun 3943  {csn 4625  0cc0 11133  cn 12237  0cn0 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-om 7866  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-nn 12238  df-n0 12498
This theorem is referenced by:  elnnne0  12511  fcdmnn0supp  12553  fcdmnn0fsupp  12554  fcdmnn0suppg  12555  facnn  14261  fac0  14262  ruclem4  16205  fzo0dvdseq  16294  domnchr  21456  mhpmulcl  22067  logexprlim  27152  eulerpartgbij  33987  eulerpartlemmf  33990  eulerpartlemgf  33994  dffltz  42049
  Copyright terms: Public domain W3C validator