MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnind Structured version   Visualization version   GIF version

Theorem nnind 11659
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 11663 for an example of its use. See nn0ind 12080 for induction on nonnegative integers and uzind 12077, uzind4 12309 for induction on an arbitrary upper set of integers. See indstr 12319 for strong induction. See also nnindALT 11660. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1 (𝑥 = 1 → (𝜑𝜓))
nnind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnind.5 𝜓
nnind.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnind (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 11652 . . . . . 6 1 ∈ ℕ
2 nnind.5 . . . . . 6 𝜓
3 nnind.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3683 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 709 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3678 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11653 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnind.6 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 610 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3683 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3683 . . . . . . . 8 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 298 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3151 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 peano5nni 11644 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
195, 17, 18mp2an 690 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
2019sseli 3966 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
21 nnind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2221elrab 3683 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
2320, 22sylib 220 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
2423simprd 498 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  {crab 3145  wss 3939  (class class class)co 7159  1c1 10541   + caddc 10543  cn 11641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-1cn 10598
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-nn 11642
This theorem is referenced by:  nnindALT  11660  nn1m1nn  11661  nnaddcl  11663  nnmulcl  11664  nnge1  11668  nnne0  11674  nnsub  11684  nneo  12069  peano5uzi  12074  nn0ind-raph  12085  ser1const  13429  expcllem  13443  expeq0  13462  expmordi  13534  seqcoll  13825  relexpsucnnl  14394  relexpcnv  14397  relexprelg  14400  relexpnndm  14403  relexpaddnn  14413  climcndslem2  15208  sqrt2irr  15605  gcdmultipleOLD  15903  rplpwr  15910  prmind2  16032  prmdvdsexp  16062  eulerthlem2  16122  pcmpt  16231  prmpwdvds  16243  vdwlem10  16329  mulgnnass  18265  imasdsf1olem  22986  ovolunlem1a  24100  ovolicc2lem3  24123  voliunlem1  24154  volsup  24160  dvexp  24553  plyco  24834  dgrcolem1  24866  vieta1  24904  emcllem6  25581  bposlem5  25867  2sqlem10  26007  dchrisum0flb  26089  iuninc  30315  nnindd  30539  ofldchr  30891  nexple  31272  esumfzf  31332  rrvsum  31716  subfacp1lem6  32436  cvmliftlem10  32545  bcprod  32974  faclimlem1  32979  incsequz  35027  bfplem1  35104  nnn1suc  39165  nnadd1com  39166  nnaddcom  39167  nnadddir  39169  nnmul1com  39170  nnmulcom  39171  2nn0ind  39548  relexpxpnnidm  40054  relexpss1d  40056  iunrelexpmin1  40059  relexpmulnn  40060  trclrelexplem  40062  iunrelexpmin2  40063  relexp0a  40067  cotrcltrcl  40076  trclimalb2  40077  cotrclrcl  40093  inductionexd  40511  fmuldfeq  41870  dvnmptconst  42232  stoweidlem20  42312  wallispilem4  42360  wallispi2lem1  42363  wallispi2lem2  42364  dirkertrigeqlem1  42390  iccelpart  43600  nn0sumshdiglem2  44689
  Copyright terms: Public domain W3C validator