| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12263 for an example of its use. See nn0ind 12688 for induction on nonnegative integers and uzind 12685, uzind4 12922 for induction on an arbitrary upper set of integers. See indstr 12932 for strong induction. See also nnindALT 12259. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nnind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nnind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nnind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nnind.5 | ⊢ 𝜓 |
| nnind.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nnind | ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12251 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 2 | nnind.5 | . . . . . 6 ⊢ 𝜓 | |
| 3 | nnind.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elrab 3671 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
| 5 | 1, 2, 4 | mpbir2an 711 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 6 | elrabi 3666 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
| 7 | peano2nn 12252 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 8 | 7 | a1d 25 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
| 9 | nnind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
| 10 | 8, 9 | anim12d 609 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
| 11 | nnind.2 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 12 | 11 | elrab 3671 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
| 13 | nnind.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 14 | 13 | elrab 3671 | . . . . . . . 8 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
| 15 | 10, 12, 14 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
| 16 | 6, 15 | mpcom 38 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 17 | 16 | rgen 3053 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 18 | peano5nni 12243 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
| 19 | 5, 17, 18 | mp2an 692 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
| 20 | 19 | sseli 3954 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 21 | nnind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 22 | 21 | elrab 3671 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
| 23 | 20, 22 | sylib 218 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
| 24 | 23 | simprd 495 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ⊆ wss 3926 (class class class)co 7405 1c1 11130 + caddc 11132 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 |
| This theorem is referenced by: nnindALT 12259 nnindd 12260 nn1m1nn 12261 nnaddcl 12263 nnmulcl 12264 nnge1 12268 nnne0 12274 nnsub 12284 nneo 12677 peano5uzi 12682 nn0ind-raph 12693 ser1const 14076 expcllem 14090 expeq0 14110 expmordi 14185 seqcoll 14482 relexpsucnnl 15049 relexpcnv 15054 relexprelg 15057 relexpnndm 15060 relexpaddnn 15070 climcndslem2 15866 sqrt2irr 16267 rplpwr 16577 prmind2 16704 prmdvdsexp 16734 eulerthlem2 16801 pcmpt 16912 prmpwdvds 16924 vdwlem10 17010 mulgnnass 19092 imasdsf1olem 24312 ovolunlem1a 25449 ovolicc2lem3 25472 voliunlem1 25503 volsup 25509 dvexp 25909 plyco 26198 dgrcolem1 26231 vieta1 26272 emcllem6 26963 bposlem5 27251 2sqlem10 27391 dchrisum0flb 27473 iuninc 32541 nexple 32823 ofldchr 33336 esumfzf 34100 rrvsum 34486 subfacp1lem6 35207 cvmliftlem10 35316 bcprod 35755 faclimlem1 35760 incsequz 37772 bfplem1 37846 nnn1suc 42316 nnadd1com 42317 nnaddcom 42318 nnadddir 42320 nnmul1com 42321 nnmulcom 42322 2nn0ind 42969 relexpxpnnidm 43727 relexpss1d 43729 iunrelexpmin1 43732 relexpmulnn 43733 trclrelexplem 43735 iunrelexpmin2 43736 relexp0a 43740 cotrcltrcl 43749 trclimalb2 43750 cotrclrcl 43766 inductionexd 44179 fmuldfeq 45612 dvnmptconst 45970 stoweidlem20 46049 wallispilem4 46097 wallispi2lem1 46100 wallispi2lem2 46101 dirkertrigeqlem1 46127 iccelpart 47447 nn0sumshdiglem2 48602 |
| Copyright terms: Public domain | W3C validator |