| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12209 for an example of its use. See nn0ind 12629 for induction on nonnegative integers and uzind 12626, uzind4 12865 for induction on an arbitrary upper set of integers. See indstr 12875 for strong induction. See also nnindALT 12205. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nnind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nnind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nnind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nnind.5 | ⊢ 𝜓 |
| nnind.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nnind | ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12197 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 2 | nnind.5 | . . . . . 6 ⊢ 𝜓 | |
| 3 | nnind.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elrab 3659 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
| 5 | 1, 2, 4 | mpbir2an 711 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 6 | elrabi 3654 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
| 7 | peano2nn 12198 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 8 | 7 | a1d 25 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
| 9 | nnind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
| 10 | 8, 9 | anim12d 609 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
| 11 | nnind.2 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 12 | 11 | elrab 3659 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
| 13 | nnind.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 14 | 13 | elrab 3659 | . . . . . . . 8 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
| 15 | 10, 12, 14 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
| 16 | 6, 15 | mpcom 38 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 17 | 16 | rgen 3046 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 18 | peano5nni 12189 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
| 19 | 5, 17, 18 | mp2an 692 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
| 20 | 19 | sseli 3942 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 21 | nnind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 22 | 21 | elrab 3659 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
| 23 | 20, 22 | sylib 218 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
| 24 | 23 | simprd 495 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 (class class class)co 7387 1c1 11069 + caddc 11071 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: nnindALT 12205 nnindd 12206 nn1m1nn 12207 nnaddcl 12209 nnmulcl 12210 nnge1 12214 nnne0 12220 nnsub 12230 nneo 12618 peano5uzi 12623 nn0ind-raph 12634 ser1const 14023 expcllem 14037 expeq0 14057 expmordi 14132 seqcoll 14429 relexpsucnnl 14996 relexpcnv 15001 relexprelg 15004 relexpnndm 15007 relexpaddnn 15017 climcndslem2 15816 sqrt2irr 16217 rplpwr 16528 prmind2 16655 prmdvdsexp 16685 eulerthlem2 16752 pcmpt 16863 prmpwdvds 16875 vdwlem10 16961 mulgnnass 19041 imasdsf1olem 24261 ovolunlem1a 25397 ovolicc2lem3 25420 voliunlem1 25451 volsup 25457 dvexp 25857 plyco 26146 dgrcolem1 26179 vieta1 26220 emcllem6 26911 bposlem5 27199 2sqlem10 27339 dchrisum0flb 27421 iuninc 32489 nexple 32769 ofldchr 33292 esumfzf 34059 rrvsum 34445 subfacp1lem6 35172 cvmliftlem10 35281 bcprod 35725 faclimlem1 35730 incsequz 37742 bfplem1 37816 nnn1suc 42254 nnadd1com 42255 nnaddcom 42256 nnadddir 42258 nnmul1com 42259 nnmulcom 42260 2nn0ind 42934 relexpxpnnidm 43692 relexpss1d 43694 iunrelexpmin1 43697 relexpmulnn 43698 trclrelexplem 43700 iunrelexpmin2 43701 relexp0a 43705 cotrcltrcl 43714 trclimalb2 43715 cotrclrcl 43731 inductionexd 44144 fmuldfeq 45581 dvnmptconst 45939 stoweidlem20 46018 wallispilem4 46066 wallispi2lem1 46069 wallispi2lem2 46070 dirkertrigeqlem1 46096 iccelpart 47434 nn0sumshdiglem2 48611 |
| Copyright terms: Public domain | W3C validator |