Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnind Structured version   Visualization version   GIF version

Theorem nnind 11648
 Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 11652 for an example of its use. See nn0ind 12069 for induction on nonnegative integers and uzind 12066, uzind4 12298 for induction on an arbitrary upper set of integers. See indstr 12308 for strong induction. See also nnindALT 11649. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1 (𝑥 = 1 → (𝜑𝜓))
nnind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnind.5 𝜓
nnind.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnind (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 11641 . . . . . 6 1 ∈ ℕ
2 nnind.5 . . . . . 6 𝜓
3 nnind.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3683 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 707 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3678 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11642 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnind.6 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 608 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3683 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3683 . . . . . . . 8 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 297 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3152 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 peano5nni 11633 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
195, 17, 18mp2an 688 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
2019sseli 3966 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
21 nnind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2221elrab 3683 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
2320, 22sylib 219 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
2423simprd 496 1 (𝐴 ∈ ℕ → 𝜏)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∀wral 3142  {crab 3146   ⊆ wss 3939  (class class class)co 7151  1c1 10530   + caddc 10532  ℕcn 11630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-1cn 10587 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-nn 11631 This theorem is referenced by:  nnindALT  11649  nn1m1nn  11650  nnaddcl  11652  nnmulcl  11653  nnge1  11657  nnne0  11663  nnsub  11673  nneo  12058  peano5uzi  12063  nn0ind-raph  12074  ser1const  13419  expcllem  13433  expeq0  13452  expmordi  13524  seqcoll  13815  relexpsucnnl  14384  relexpcnv  14387  relexprelg  14390  relexpnndm  14393  relexpaddnn  14403  climcndslem2  15197  sqrt2irr  15594  gcdmultipleOLD  15892  rplpwr  15899  prmind2  16021  prmdvdsexp  16051  eulerthlem2  16111  pcmpt  16220  prmpwdvds  16232  vdwlem10  16318  mulgnnass  18194  imasdsf1olem  22900  ovolunlem1a  24014  ovolicc2lem3  24037  voliunlem1  24068  volsup  24074  dvexp  24467  plyco  24748  dgrcolem1  24780  vieta1  24818  emcllem6  25494  bposlem5  25780  2sqlem10  25920  dchrisum0flb  26002  iuninc  30229  nnindd  30451  ofldchr  30803  nexple  31156  esumfzf  31216  rrvsum  31600  subfacp1lem6  32318  cvmliftlem10  32427  bcprod  32856  faclimlem1  32861  incsequz  34893  bfplem1  34970  nnn1suc  39026  nnadd1com  39027  nnaddcom  39028  nnadddir  39030  nnmul1com  39031  nnmulcom  39032  2nn0ind  39409  relexpxpnnidm  39915  relexpss1d  39917  iunrelexpmin1  39920  relexpmulnn  39921  trclrelexplem  39923  iunrelexpmin2  39924  relexp0a  39928  cotrcltrcl  39937  trclimalb2  39938  cotrclrcl  39954  inductionexd  40372  fmuldfeq  41731  dvnmptconst  42093  stoweidlem20  42173  wallispilem4  42221  wallispi2lem1  42224  wallispi2lem2  42225  dirkertrigeqlem1  42251  iccelpart  43427  nn0sumshdiglem2  44516
 Copyright terms: Public domain W3C validator