MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnind Structured version   Visualization version   GIF version

Theorem nnind 12281
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12286 for an example of its use. See nn0ind 12710 for induction on nonnegative integers and uzind 12707, uzind4 12945 for induction on an arbitrary upper set of integers. See indstr 12955 for strong induction. See also nnindALT 12282. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
Hypotheses
Ref Expression
nnind.1 (𝑥 = 1 → (𝜑𝜓))
nnind.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnind.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnind.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnind.5 𝜓
nnind.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnind (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnind
StepHypRef Expression
1 1nn 12274 . . . . . 6 1 ∈ ℕ
2 nnind.5 . . . . . 6 𝜓
3 nnind.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3694 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 711 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3689 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 12275 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnind.6 . . . . . . . . 9 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 609 . . . . . . . 8 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnind.2 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3694 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnind.3 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3694 . . . . . . . 8 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 296 . . . . . . 7 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . 6 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3060 . . . . 5 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 peano5nni 12266 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
195, 17, 18mp2an 692 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
2019sseli 3990 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
21 nnind.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
2221elrab 3694 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
2320, 22sylib 218 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
2423simprd 495 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  {crab 3432  wss 3962  (class class class)co 7430  1c1 11153   + caddc 11155  cn 12263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-1cn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-nn 12264
This theorem is referenced by:  nnindALT  12282  nnindd  12283  nn1m1nn  12284  nnaddcl  12286  nnmulcl  12287  nnge1  12291  nnne0  12297  nnsub  12307  nneo  12699  peano5uzi  12704  nn0ind-raph  12715  ser1const  14095  expcllem  14109  expeq0  14129  expmordi  14203  seqcoll  14499  relexpsucnnl  15065  relexpcnv  15070  relexprelg  15073  relexpnndm  15076  relexpaddnn  15086  climcndslem2  15882  sqrt2irr  16281  rplpwr  16591  prmind2  16718  prmdvdsexp  16748  eulerthlem2  16815  pcmpt  16925  prmpwdvds  16937  vdwlem10  17023  mulgnnass  19139  imasdsf1olem  24398  ovolunlem1a  25544  ovolicc2lem3  25567  voliunlem1  25598  volsup  25604  dvexp  26005  plyco  26294  dgrcolem1  26327  vieta1  26368  emcllem6  27058  bposlem5  27346  2sqlem10  27486  dchrisum0flb  27568  iuninc  32580  ofldchr  33323  nexple  33989  esumfzf  34049  rrvsum  34435  subfacp1lem6  35169  cvmliftlem10  35278  bcprod  35717  faclimlem1  35722  incsequz  37734  bfplem1  37808  nnn1suc  42279  nnadd1com  42280  nnaddcom  42281  nnadddir  42283  nnmul1com  42284  nnmulcom  42285  2nn0ind  42933  relexpxpnnidm  43692  relexpss1d  43694  iunrelexpmin1  43697  relexpmulnn  43698  trclrelexplem  43700  iunrelexpmin2  43701  relexp0a  43705  cotrcltrcl  43714  trclimalb2  43715  cotrclrcl  43731  inductionexd  44144  fmuldfeq  45538  dvnmptconst  45896  stoweidlem20  45975  wallispilem4  46023  wallispi2lem1  46026  wallispi2lem2  46027  dirkertrigeqlem1  46053  iccelpart  47357  nn0sumshdiglem2  48471
  Copyright terms: Public domain W3C validator