| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnind | Structured version Visualization version GIF version | ||
| Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 12143 for an example of its use. See nn0ind 12563 for induction on nonnegative integers and uzind 12560, uzind4 12799 for induction on an arbitrary upper set of integers. See indstr 12809 for strong induction. See also nnindALT 12139. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
| Ref | Expression |
|---|---|
| nnind.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
| nnind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| nnind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
| nnind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| nnind.5 | ⊢ 𝜓 |
| nnind.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| nnind | ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12131 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 2 | nnind.5 | . . . . . 6 ⊢ 𝜓 | |
| 3 | nnind.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | elrab 3642 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
| 5 | 1, 2, 4 | mpbir2an 711 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 6 | elrabi 3638 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
| 7 | peano2nn 12132 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
| 8 | 7 | a1d 25 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
| 9 | nnind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
| 10 | 8, 9 | anim12d 609 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
| 11 | nnind.2 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 12 | 11 | elrab 3642 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
| 13 | nnind.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
| 14 | 13 | elrab 3642 | . . . . . . . 8 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
| 15 | 10, 12, 14 | 3imtr4g 296 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
| 16 | 6, 15 | mpcom 38 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 17 | 16 | rgen 3049 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
| 18 | peano5nni 12123 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
| 19 | 5, 17, 18 | mp2an 692 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
| 20 | 19 | sseli 3925 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
| 21 | nnind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 22 | 21 | elrab 3642 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
| 23 | 20, 22 | sylib 218 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
| 24 | 23 | simprd 495 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 (class class class)co 7341 1c1 11002 + caddc 11004 ℕcn 12120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 |
| This theorem is referenced by: nnindALT 12139 nnindd 12140 nn1m1nn 12141 nnaddcl 12143 nnmulcl 12144 nnge1 12148 nnne0 12154 nnsub 12164 nneo 12552 peano5uzi 12557 nn0ind-raph 12568 ser1const 13960 expcllem 13974 expeq0 13994 expmordi 14069 seqcoll 14366 relexpsucnnl 14932 relexpcnv 14937 relexprelg 14940 relexpnndm 14943 relexpaddnn 14953 climcndslem2 15752 sqrt2irr 16153 rplpwr 16464 prmind2 16591 prmdvdsexp 16621 eulerthlem2 16688 pcmpt 16799 prmpwdvds 16811 vdwlem10 16897 mulgnnass 19017 ofldchr 21508 imasdsf1olem 24283 ovolunlem1a 25419 ovolicc2lem3 25442 voliunlem1 25473 volsup 25479 dvexp 25879 plyco 26168 dgrcolem1 26201 vieta1 26242 emcllem6 26933 bposlem5 27221 2sqlem10 27361 dchrisum0flb 27443 iuninc 32532 nexple 32819 esumfzf 34074 rrvsum 34459 subfacp1lem6 35221 cvmliftlem10 35330 bcprod 35774 faclimlem1 35779 incsequz 37788 bfplem1 37862 nnn1suc 42299 nnadd1com 42300 nnaddcom 42301 nnadddir 42303 nnmul1com 42304 nnmulcom 42305 2nn0ind 42978 relexpxpnnidm 43736 relexpss1d 43738 iunrelexpmin1 43741 relexpmulnn 43742 trclrelexplem 43744 iunrelexpmin2 43745 relexp0a 43749 cotrcltrcl 43758 trclimalb2 43759 cotrclrcl 43775 inductionexd 44188 fmuldfeq 45623 dvnmptconst 45979 stoweidlem20 46058 wallispilem4 46106 wallispi2lem1 46109 wallispi2lem2 46110 dirkertrigeqlem1 46136 iccelpart 47464 nn0sumshdiglem2 48654 |
| Copyright terms: Public domain | W3C validator |