Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 11907 and ax-resscn 10859 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10860 | . 2 ⊢ 1 ∈ ℂ | |
2 | peano2cn 11077 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
3 | 2 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
4 | peano5nni 11906 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
5 | 1, 3, 4 | mp2an 688 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 ℕcn 11903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 |
This theorem is referenced by: nnex 11909 nncn 11911 nncnd 11919 nn0sscn 12168 nn0addcl 12198 nn0mulcl 12199 dfz2 12268 nnexpcl 13723 fprodnncl 15593 nnrisefaccl 15657 znnen 15849 wunndx 16824 cmetcaulem 24357 dvdsmulf1o 26248 fsumdvdsmul 26249 esumcvg 31954 eulerpartlemgs2 32247 fsum2dsub 32487 reprsuc 32495 nndivsub 34573 fsumnncl 43003 nnsgrpmgm 45258 nnsgrp 45259 nnsgrpnmnd 45260 |
Copyright terms: Public domain | W3C validator |