| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12197 and ax-resscn 11132 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | peano2cn 11353 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
| 3 | 2 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
| 4 | peano5nni 12196 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 ℕcn 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 |
| This theorem is referenced by: nnex 12199 nncn 12201 nncnd 12209 nn0sscn 12454 nn0addcl 12484 nn0mulcl 12485 dfz2 12555 nnexpcl 14046 fprodnncl 15928 nnrisefaccl 15992 znnen 16187 wunndx 17172 cmetcaulem 25195 mpodvdsmulf1o 27111 fsumdvdsmul 27112 dvdsmulf1o 27113 fsumdvdsmulOLD 27114 esumcvg 34083 eulerpartlemgs2 34378 fsum2dsub 34605 reprsuc 34613 nndivsub 36452 fsumnncl 45577 nnsgrpmgm 48168 nnsgrp 48169 nnsgrpnmnd 48170 |
| Copyright terms: Public domain | W3C validator |