| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12124 and ax-resscn 11058 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11059 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | peano2cn 11280 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
| 3 | 2 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
| 4 | peano5nni 12123 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 ℕcn 12120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 |
| This theorem is referenced by: nnex 12126 nncn 12128 nncnd 12136 nn0sscn 12381 nn0addcl 12411 nn0mulcl 12412 dfz2 12482 nnexpcl 13976 fprodnncl 15857 nnrisefaccl 15921 znnen 16116 wunndx 17101 cmetcaulem 25210 mpodvdsmulf1o 27126 fsumdvdsmul 27127 dvdsmulf1o 27128 fsumdvdsmulOLD 27129 esumcvg 34091 eulerpartlemgs2 34385 fsum2dsub 34612 reprsuc 34620 nndivsub 36491 fsumnncl 45612 nnsgrpmgm 48207 nnsgrp 48208 nnsgrpnmnd 48209 |
| Copyright terms: Public domain | W3C validator |