MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsscn Structured version   Visualization version   GIF version

Theorem nnsscn 12133
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12132 and ax-resscn 11066 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 ax-1cn 11067 . 2 1 ∈ ℂ
2 peano2cn 11288 . . 3 (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ)
32rgen 3046 . 2 𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ
4 peano5nni 12131 . 2 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ)
51, 3, 4mp2an 692 1 ℕ ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3044  wss 3903  (class class class)co 7349  cc 11007  1c1 11010   + caddc 11012  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129
This theorem is referenced by:  nnex  12134  nncn  12136  nncnd  12144  nn0sscn  12389  nn0addcl  12419  nn0mulcl  12420  dfz2  12490  nnexpcl  13981  fprodnncl  15862  nnrisefaccl  15926  znnen  16121  wunndx  17106  cmetcaulem  25186  mpodvdsmulf1o  27102  fsumdvdsmul  27103  dvdsmulf1o  27104  fsumdvdsmulOLD  27105  esumcvg  34053  eulerpartlemgs2  34348  fsum2dsub  34575  reprsuc  34583  nndivsub  36431  fsumnncl  45553  nnsgrpmgm  48160  nnsgrp  48161  nnsgrpnmnd  48162
  Copyright terms: Public domain W3C validator