| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12190 and ax-resscn 11125 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | peano2cn 11346 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
| 3 | 2 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
| 4 | peano5nni 12189 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 ℕcn 12186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 |
| This theorem is referenced by: nnex 12192 nncn 12194 nncnd 12202 nn0sscn 12447 nn0addcl 12477 nn0mulcl 12478 dfz2 12548 nnexpcl 14039 fprodnncl 15921 nnrisefaccl 15985 znnen 16180 wunndx 17165 cmetcaulem 25188 mpodvdsmulf1o 27104 fsumdvdsmul 27105 dvdsmulf1o 27106 fsumdvdsmulOLD 27107 esumcvg 34076 eulerpartlemgs2 34371 fsum2dsub 34598 reprsuc 34606 nndivsub 36445 fsumnncl 45570 nnsgrpmgm 48164 nnsgrp 48165 nnsgrpnmnd 48166 |
| Copyright terms: Public domain | W3C validator |