![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12216 and ax-resscn 11167 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11168 | . 2 ⊢ 1 ∈ ℂ | |
2 | peano2cn 11386 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
3 | 2 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
4 | peano5nni 12215 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ∀wral 3062 ⊆ wss 3949 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 ℕcn 12212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 |
This theorem is referenced by: nnex 12218 nncn 12220 nncnd 12228 nn0sscn 12477 nn0addcl 12507 nn0mulcl 12508 dfz2 12577 nnexpcl 14040 fprodnncl 15899 nnrisefaccl 15963 znnen 16155 wunndx 17128 cmetcaulem 24805 dvdsmulf1o 26698 fsumdvdsmul 26699 esumcvg 33084 eulerpartlemgs2 33379 fsum2dsub 33619 reprsuc 33627 nndivsub 35342 fsumnncl 44288 nnsgrpmgm 46586 nnsgrp 46587 nnsgrpnmnd 46588 |
Copyright terms: Public domain | W3C validator |