MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsscn Structured version   Visualization version   GIF version

Theorem nnsscn 12269
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12268 and ax-resscn 11210 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.)
Assertion
Ref Expression
nnsscn ℕ ⊆ ℂ

Proof of Theorem nnsscn
StepHypRef Expression
1 ax-1cn 11211 . 2 1 ∈ ℂ
2 peano2cn 11431 . . 3 (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ)
32rgen 3061 . 2 𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ
4 peano5nni 12267 . 2 ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ)
51, 3, 4mp2an 692 1 ℕ ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3059  wss 3963  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156  cn 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-nn 12265
This theorem is referenced by:  nnex  12270  nncn  12272  nncnd  12280  nn0sscn  12529  nn0addcl  12559  nn0mulcl  12560  dfz2  12630  nnexpcl  14112  fprodnncl  15988  nnrisefaccl  16052  znnen  16245  wunndx  17229  cmetcaulem  25336  mpodvdsmulf1o  27252  fsumdvdsmul  27253  dvdsmulf1o  27254  fsumdvdsmulOLD  27255  esumcvg  34067  eulerpartlemgs2  34362  fsum2dsub  34601  reprsuc  34609  nndivsub  36440  fsumnncl  45528  nnsgrpmgm  48020  nnsgrp  48021  nnsgrpnmnd  48022
  Copyright terms: Public domain W3C validator