| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version | ||
| Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12244 and ax-resscn 11186 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| nnsscn | ⊢ ℕ ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11187 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | peano2cn 11407 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
| 3 | 2 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
| 4 | peano5nni 12243 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
| 5 | 1, 3, 4 | mp2an 692 | 1 ⊢ ℕ ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 |
| This theorem is referenced by: nnex 12246 nncn 12248 nncnd 12256 nn0sscn 12506 nn0addcl 12536 nn0mulcl 12537 dfz2 12607 nnexpcl 14092 fprodnncl 15971 nnrisefaccl 16035 znnen 16230 wunndx 17214 cmetcaulem 25240 mpodvdsmulf1o 27156 fsumdvdsmul 27157 dvdsmulf1o 27158 fsumdvdsmulOLD 27159 esumcvg 34117 eulerpartlemgs2 34412 fsum2dsub 34639 reprsuc 34647 nndivsub 36475 fsumnncl 45601 nnsgrpmgm 48151 nnsgrp 48152 nnsgrpnmnd 48153 |
| Copyright terms: Public domain | W3C validator |