![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 12297 and ax-resscn 11241 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . 2 ⊢ 1 ∈ ℂ | |
2 | peano2cn 11462 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
3 | 2 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
4 | peano5nni 12296 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
5 | 1, 3, 4 | mp2an 691 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 ℕcn 12293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 |
This theorem is referenced by: nnex 12299 nncn 12301 nncnd 12309 nn0sscn 12558 nn0addcl 12588 nn0mulcl 12589 dfz2 12658 nnexpcl 14125 fprodnncl 16003 nnrisefaccl 16067 znnen 16260 wunndx 17242 cmetcaulem 25341 mpodvdsmulf1o 27255 fsumdvdsmul 27256 dvdsmulf1o 27257 fsumdvdsmulOLD 27258 esumcvg 34050 eulerpartlemgs2 34345 fsum2dsub 34584 reprsuc 34592 nndivsub 36423 fsumnncl 45493 nnsgrpmgm 47899 nnsgrp 47900 nnsgrpnmnd 47901 |
Copyright terms: Public domain | W3C validator |