Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsscn | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the complex numbers. Remark: this could also be proven from nnssre 11977 and ax-resscn 10928 at the cost of using more axioms. (Contributed by NM, 2-Aug-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
nnsscn | ⊢ ℕ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10929 | . 2 ⊢ 1 ∈ ℂ | |
2 | peano2cn 11147 | . . 3 ⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ) | |
3 | 2 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ |
4 | peano5nni 11976 | . 2 ⊢ ((1 ∈ ℂ ∧ ∀𝑥 ∈ ℂ (𝑥 + 1) ∈ ℂ) → ℕ ⊆ ℂ) | |
5 | 1, 3, 4 | mp2an 689 | 1 ⊢ ℕ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 |
This theorem is referenced by: nnex 11979 nncn 11981 nncnd 11989 nn0sscn 12238 nn0addcl 12268 nn0mulcl 12269 dfz2 12338 nnexpcl 13795 fprodnncl 15665 nnrisefaccl 15729 znnen 15921 wunndx 16896 cmetcaulem 24452 dvdsmulf1o 26343 fsumdvdsmul 26344 esumcvg 32054 eulerpartlemgs2 32347 fsum2dsub 32587 reprsuc 32595 nndivsub 34646 fsumnncl 43113 nnsgrpmgm 45370 nnsgrp 45371 nnsgrpnmnd 45372 |
Copyright terms: Public domain | W3C validator |