MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn2 Structured version   Visualization version   GIF version

Theorem dfnn2 12159
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 12147 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1ex 11130 . . . . 5 1 ∈ V
21elintab 4911 . . . 4 (1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥))
3 simpl 482 . . . 4 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥)
42, 3mpgbir 1799 . . 3 1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
5 oveq1 7360 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
65eleq1d 2813 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑧 + 1) ∈ 𝑥))
76rspccv 3576 . . . . . . . 8 (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
87adantl 481 . . . . . . 7 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
98a2i 14 . . . . . 6 (((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
109alimi 1811 . . . . 5 (∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
11 vex 3442 . . . . . 6 𝑧 ∈ V
1211elintab 4911 . . . . 5 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥))
13 ovex 7386 . . . . . 6 (𝑧 + 1) ∈ V
1413elintab 4911 . . . . 5 ((𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
1510, 12, 143imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
1615rgen 3046 . . 3 𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
17 peano5nni 12149 . . 3 ((1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
184, 16, 17mp2an 692 . 2 ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
19 1nn 12157 . . . 4 1 ∈ ℕ
20 peano2nn 12158 . . . . 5 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2120rgen 3046 . . . 4 𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ
22 nnex 12152 . . . . 5 ℕ ∈ V
23 eleq2 2817 . . . . . 6 (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ))
24 eleq2 2817 . . . . . . 7 (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ))
2524raleqbi1dv 3302 . . . . . 6 (𝑥 = ℕ → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2623, 25anbi12d 632 . . . . 5 (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)))
2722, 26elab 3637 . . . 4 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2819, 21, 27mpbir2an 711 . . 3 ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
29 intss1 4916 . . 3 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ)
3028, 29ax-mp 5 . 2 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ
3118, 30eqssi 3954 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wss 3905   cint 4899  (class class class)co 7353  1c1 11029   + caddc 11031  cn 12146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-1cn 11086  ax-addcl 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-nn 12147
This theorem is referenced by:  dfnn3  12160
  Copyright terms: Public domain W3C validator