Step | Hyp | Ref
| Expression |
1 | | 1ex 10680 |
. . . . 5
⊢ 1 ∈
V |
2 | 1 | elintab 4852 |
. . . 4
⊢ (1 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥)) |
3 | | simpl 486 |
. . . 4
⊢ ((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥) |
4 | 2, 3 | mpgbir 1801 |
. . 3
⊢ 1 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
5 | | oveq1 7162 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1)) |
6 | 5 | eleq1d 2836 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑧 + 1) ∈ 𝑥)) |
7 | 6 | rspccv 3540 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 → (𝑧 ∈ 𝑥 → (𝑧 + 1) ∈ 𝑥)) |
8 | 7 | adantl 485 |
. . . . . . 7
⊢ ((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 ∈ 𝑥 → (𝑧 + 1) ∈ 𝑥)) |
9 | 8 | a2i 14 |
. . . . . 6
⊢ (((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥) → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) |
10 | 9 | alimi 1813 |
. . . . 5
⊢
(∀𝑥((1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥) → ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) |
11 | | vex 3413 |
. . . . . 6
⊢ 𝑧 ∈ V |
12 | 11 | elintab 4852 |
. . . . 5
⊢ (𝑧 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥)) |
13 | | ovex 7188 |
. . . . . 6
⊢ (𝑧 + 1) ∈ V |
14 | 13 | elintab 4852 |
. . . . 5
⊢ ((𝑧 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) |
15 | 10, 12, 14 | 3imtr4i 295 |
. . . 4
⊢ (𝑧 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
16 | 15 | rgen 3080 |
. . 3
⊢
∀𝑧 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
17 | | peano5nni 11682 |
. . 3
⊢ ((1
∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ∧ ∀𝑧 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → ℕ ⊆ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
18 | 4, 16, 17 | mp2an 691 |
. 2
⊢ ℕ
⊆ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
19 | | 1nn 11690 |
. . . 4
⊢ 1 ∈
ℕ |
20 | | peano2nn 11691 |
. . . . 5
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) |
21 | 20 | rgen 3080 |
. . . 4
⊢
∀𝑦 ∈
ℕ (𝑦 + 1) ∈
ℕ |
22 | | nnex 11685 |
. . . . 5
⊢ ℕ
∈ V |
23 | | eleq2 2840 |
. . . . . 6
⊢ (𝑥 = ℕ → (1 ∈
𝑥 ↔ 1 ∈
ℕ)) |
24 | | eleq2 2840 |
. . . . . . 7
⊢ (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ)) |
25 | 24 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑥 = ℕ → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) |
26 | 23, 25 | anbi12d 633 |
. . . . 5
⊢ (𝑥 = ℕ → ((1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧
∀𝑦 ∈ ℕ
(𝑦 + 1) ∈
ℕ))) |
27 | 22, 26 | elab 3590 |
. . . 4
⊢ (ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ ℕ ∧
∀𝑦 ∈ ℕ
(𝑦 + 1) ∈
ℕ)) |
28 | 19, 21, 27 | mpbir2an 710 |
. . 3
⊢ ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
29 | | intss1 4856 |
. . 3
⊢ (ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ) |
30 | 28, 29 | ax-mp 5 |
. 2
⊢ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ |
31 | 18, 30 | eqssi 3910 |
1
⊢ ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |