| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 1ex 11258 | . . . . 5
⊢ 1 ∈
V | 
| 2 | 1 | elintab 4957 | . . . 4
⊢ (1 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥)) | 
| 3 |  | simpl 482 | . . . 4
⊢ ((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥) | 
| 4 | 2, 3 | mpgbir 1798 | . . 3
⊢ 1 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 5 |  | oveq1 7439 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1)) | 
| 6 | 5 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑧 + 1) ∈ 𝑥)) | 
| 7 | 6 | rspccv 3618 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝑦 + 1) ∈ 𝑥 → (𝑧 ∈ 𝑥 → (𝑧 + 1) ∈ 𝑥)) | 
| 8 | 7 | adantl 481 | . . . . . . 7
⊢ ((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 ∈ 𝑥 → (𝑧 + 1) ∈ 𝑥)) | 
| 9 | 8 | a2i 14 | . . . . . 6
⊢ (((1
∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥) → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) | 
| 10 | 9 | alimi 1810 | . . . . 5
⊢
(∀𝑥((1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥) → ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) | 
| 11 |  | vex 3483 | . . . . . 6
⊢ 𝑧 ∈ V | 
| 12 | 11 | elintab 4957 | . . . . 5
⊢ (𝑧 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧 ∈ 𝑥)) | 
| 13 |  | ovex 7465 | . . . . . 6
⊢ (𝑧 + 1) ∈ V | 
| 14 | 13 | elintab 4957 | . . . . 5
⊢ ((𝑧 + 1) ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥)) | 
| 15 | 10, 12, 14 | 3imtr4i 292 | . . . 4
⊢ (𝑧 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 16 | 15 | rgen 3062 | . . 3
⊢
∀𝑧 ∈
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 17 |  | peano5nni 12270 | . . 3
⊢ ((1
∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ∧ ∀𝑧 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ ∩
{𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → ℕ ⊆ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 18 | 4, 16, 17 | mp2an 692 | . 2
⊢ ℕ
⊆ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 19 |  | 1nn 12278 | . . . 4
⊢ 1 ∈
ℕ | 
| 20 |  | peano2nn 12279 | . . . . 5
⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈
ℕ) | 
| 21 | 20 | rgen 3062 | . . . 4
⊢
∀𝑦 ∈
ℕ (𝑦 + 1) ∈
ℕ | 
| 22 |  | nnex 12273 | . . . . 5
⊢ ℕ
∈ V | 
| 23 |  | eleq2 2829 | . . . . . 6
⊢ (𝑥 = ℕ → (1 ∈
𝑥 ↔ 1 ∈
ℕ)) | 
| 24 |  | eleq2 2829 | . . . . . . 7
⊢ (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ)) | 
| 25 | 24 | raleqbi1dv 3337 | . . . . . 6
⊢ (𝑥 = ℕ → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)) | 
| 26 | 23, 25 | anbi12d 632 | . . . . 5
⊢ (𝑥 = ℕ → ((1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧
∀𝑦 ∈ ℕ
(𝑦 + 1) ∈
ℕ))) | 
| 27 | 22, 26 | elab 3678 | . . . 4
⊢ (ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ ℕ ∧
∀𝑦 ∈ ℕ
(𝑦 + 1) ∈
ℕ)) | 
| 28 | 19, 21, 27 | mpbir2an 711 | . . 3
⊢ ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| 29 |  | intss1 4962 | . . 3
⊢ (ℕ
∈ {𝑥 ∣ (1 ∈
𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ) | 
| 30 | 28, 29 | ax-mp 5 | . 2
⊢ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ | 
| 31 | 18, 30 | eqssi 3999 | 1
⊢ ℕ =
∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |