MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnn2 Structured version   Visualization version   GIF version

Theorem dfnn2 12306
Description: Alternate definition of the set of positive integers. This was our original definition, before the current df-nn 12294 replaced it. This definition requires the axiom of infinity to ensure it has the properties we expect. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfnn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 1ex 11286 . . . . 5 1 ∈ V
21elintab 4982 . . . 4 (1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥))
3 simpl 482 . . . 4 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 1 ∈ 𝑥)
42, 3mpgbir 1797 . . 3 1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
5 oveq1 7455 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑦 + 1) = (𝑧 + 1))
65eleq1d 2829 . . . . . . . . 9 (𝑦 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑧 + 1) ∈ 𝑥))
76rspccv 3632 . . . . . . . 8 (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
87adantl 481 . . . . . . 7 ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧𝑥 → (𝑧 + 1) ∈ 𝑥))
98a2i 14 . . . . . 6 (((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
109alimi 1809 . . . . 5 (∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥) → ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
11 vex 3492 . . . . . 6 𝑧 ∈ V
1211elintab 4982 . . . . 5 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → 𝑧𝑥))
13 ovex 7481 . . . . . 6 (𝑧 + 1) ∈ V
1413elintab 4982 . . . . 5 ((𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → (𝑧 + 1) ∈ 𝑥))
1510, 12, 143imtr4i 292 . . . 4 (𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
1615rgen 3069 . . 3 𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
17 peano5nni 12296 . . 3 ((1 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ∧ ∀𝑧 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} (𝑧 + 1) ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}) → ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
184, 16, 17mp2an 691 . 2 ℕ ⊆ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
19 1nn 12304 . . . 4 1 ∈ ℕ
20 peano2nn 12305 . . . . 5 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
2120rgen 3069 . . . 4 𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ
22 nnex 12299 . . . . 5 ℕ ∈ V
23 eleq2 2833 . . . . . 6 (𝑥 = ℕ → (1 ∈ 𝑥 ↔ 1 ∈ ℕ))
24 eleq2 2833 . . . . . . 7 (𝑥 = ℕ → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ ℕ))
2524raleqbi1dv 3346 . . . . . 6 (𝑥 = ℕ → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2623, 25anbi12d 631 . . . . 5 (𝑥 = ℕ → ((1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ)))
2722, 26elab 3694 . . . 4 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ ℕ ∧ ∀𝑦 ∈ ℕ (𝑦 + 1) ∈ ℕ))
2819, 21, 27mpbir2an 710 . . 3 ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
29 intss1 4987 . . 3 (ℕ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ)
3028, 29ax-mp 5 . 2 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ ℕ
3118, 30eqssi 4025 1 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wss 3976   cint 4970  (class class class)co 7448  1c1 11185   + caddc 11187  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294
This theorem is referenced by:  dfnn3  12307
  Copyright terms: Public domain W3C validator