![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version |
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cn0 12472 | . 2 class ℕ0 | |
2 | cn 12212 | . . 3 class ℕ | |
3 | cc0 11110 | . . . 4 class 0 | |
4 | 3 | csn 4629 | . . 3 class {0} |
5 | 2, 4 | cun 3947 | . 2 class (ℕ ∪ {0}) |
6 | 1, 5 | wceq 1542 | 1 wff ℕ0 = (ℕ ∪ {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: elnn0 12474 nnssnn0 12475 nn0ssre 12476 nn0sscn 12477 nn0ex 12478 dfn2 12485 nn0addcl 12507 nn0mulcl 12508 nn0ssz 12581 dvdsprmpweqnn 16818 cply1coe0bi 21824 m2cpminvid2lem 22256 pmatcollpw3fi1 22290 dfrtrcl4 42489 corcltrcl 42490 cotrclrcl 42493 |
Copyright terms: Public domain | W3C validator |