| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12499 | . 2 class ℕ0 | |
| 2 | cn 12238 | . . 3 class ℕ | |
| 3 | cc0 11127 | . . . 4 class 0 | |
| 4 | 3 | csn 4601 | . . 3 class {0} |
| 5 | 2, 4 | cun 3924 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12501 nnssnn0 12502 nn0ssre 12503 nn0sscn 12504 nn0ex 12505 dfn2 12512 nn0addcl 12534 nn0mulcl 12535 nn0ssz 12609 dvdsprmpweqnn 16903 cply1coe0bi 22238 m2cpminvid2lem 22690 pmatcollpw3fi1 22724 dfrtrcl4 43709 corcltrcl 43710 cotrclrcl 43713 |
| Copyright terms: Public domain | W3C validator |