MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12500
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12499 . 2 class 0
2 cn 12238 . . 3 class
3 cc0 11127 . . . 4 class 0
43csn 4601 . . 3 class {0}
52, 4cun 3924 . 2 class (ℕ ∪ {0})
61, 5wceq 1540 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12501  nnssnn0  12502  nn0ssre  12503  nn0sscn  12504  nn0ex  12505  dfn2  12512  nn0addcl  12534  nn0mulcl  12535  nn0ssz  12609  dvdsprmpweqnn  16903  cply1coe0bi  22238  m2cpminvid2lem  22690  pmatcollpw3fi1  22724  dfrtrcl4  43709  corcltrcl  43710  cotrclrcl  43713
  Copyright terms: Public domain W3C validator