| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12378 | . 2 class ℕ0 | |
| 2 | cn 12122 | . . 3 class ℕ | |
| 3 | cc0 11003 | . . . 4 class 0 | |
| 4 | 3 | csn 4576 | . . 3 class {0} |
| 5 | 2, 4 | cun 3900 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12380 nnssnn0 12381 nn0ssre 12382 nn0sscn 12383 nn0ex 12384 dfn2 12391 nn0addcl 12413 nn0mulcl 12414 nn0ssz 12488 dvdsprmpweqnn 16794 cply1coe0bi 22215 m2cpminvid2lem 22667 pmatcollpw3fi1 22701 dfrtrcl4 43770 corcltrcl 43771 cotrclrcl 43774 |
| Copyright terms: Public domain | W3C validator |