MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12443
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12442 . 2 class 0
2 cn 12186 . . 3 class
3 cc0 11068 . . . 4 class 0
43csn 4589 . . 3 class {0}
52, 4cun 3912 . 2 class (ℕ ∪ {0})
61, 5wceq 1540 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12444  nnssnn0  12445  nn0ssre  12446  nn0sscn  12447  nn0ex  12448  dfn2  12455  nn0addcl  12477  nn0mulcl  12478  nn0ssz  12552  dvdsprmpweqnn  16856  cply1coe0bi  22189  m2cpminvid2lem  22641  pmatcollpw3fi1  22675  dfrtrcl4  43727  corcltrcl  43728  cotrclrcl  43731
  Copyright terms: Public domain W3C validator