MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12379
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12378 . 2 class 0
2 cn 12122 . . 3 class
3 cc0 11003 . . . 4 class 0
43csn 4576 . . 3 class {0}
52, 4cun 3900 . 2 class (ℕ ∪ {0})
61, 5wceq 1541 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12380  nnssnn0  12381  nn0ssre  12382  nn0sscn  12383  nn0ex  12384  dfn2  12391  nn0addcl  12413  nn0mulcl  12414  nn0ssz  12488  dvdsprmpweqnn  16794  cply1coe0bi  22215  m2cpminvid2lem  22667  pmatcollpw3fi1  22701  dfrtrcl4  43770  corcltrcl  43771  cotrclrcl  43774
  Copyright terms: Public domain W3C validator