| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12402 | . 2 class ℕ0 | |
| 2 | cn 12146 | . . 3 class ℕ | |
| 3 | cc0 11028 | . . . 4 class 0 | |
| 4 | 3 | csn 4579 | . . 3 class {0} |
| 5 | 2, 4 | cun 3903 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12404 nnssnn0 12405 nn0ssre 12406 nn0sscn 12407 nn0ex 12408 dfn2 12415 nn0addcl 12437 nn0mulcl 12438 nn0ssz 12512 dvdsprmpweqnn 16815 cply1coe0bi 22205 m2cpminvid2lem 22657 pmatcollpw3fi1 22691 dfrtrcl4 43711 corcltrcl 43712 cotrclrcl 43715 |
| Copyright terms: Public domain | W3C validator |