| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12388 | . 2 class ℕ0 | |
| 2 | cn 12132 | . . 3 class ℕ | |
| 3 | cc0 11013 | . . . 4 class 0 | |
| 4 | 3 | csn 4575 | . . 3 class {0} |
| 5 | 2, 4 | cun 3896 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1541 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12390 nnssnn0 12391 nn0ssre 12392 nn0sscn 12393 nn0ex 12394 dfn2 12401 nn0addcl 12423 nn0mulcl 12424 nn0ssz 12498 dvdsprmpweqnn 16799 cply1coe0bi 22218 m2cpminvid2lem 22670 pmatcollpw3fi1 22704 dfrtrcl4 43855 corcltrcl 43856 cotrclrcl 43859 |
| Copyright terms: Public domain | W3C validator |