MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12554
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12553 . 2 class 0
2 cn 12293 . . 3 class
3 cc0 11184 . . . 4 class 0
43csn 4648 . . 3 class {0}
52, 4cun 3974 . 2 class (ℕ ∪ {0})
61, 5wceq 1537 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12555  nnssnn0  12556  nn0ssre  12557  nn0sscn  12558  nn0ex  12559  dfn2  12566  nn0addcl  12588  nn0mulcl  12589  nn0ssz  12662  dvdsprmpweqnn  16932  cply1coe0bi  22327  m2cpminvid2lem  22781  pmatcollpw3fi1  22815  dfrtrcl4  43700  corcltrcl  43701  cotrclrcl  43704
  Copyright terms: Public domain W3C validator