![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version |
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cn0 12553 | . 2 class ℕ0 | |
2 | cn 12293 | . . 3 class ℕ | |
3 | cc0 11184 | . . . 4 class 0 | |
4 | 3 | csn 4648 | . . 3 class {0} |
5 | 2, 4 | cun 3974 | . 2 class (ℕ ∪ {0}) |
6 | 1, 5 | wceq 1537 | 1 wff ℕ0 = (ℕ ∪ {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: elnn0 12555 nnssnn0 12556 nn0ssre 12557 nn0sscn 12558 nn0ex 12559 dfn2 12566 nn0addcl 12588 nn0mulcl 12589 nn0ssz 12662 dvdsprmpweqnn 16932 cply1coe0bi 22327 m2cpminvid2lem 22781 pmatcollpw3fi1 22815 dfrtrcl4 43700 corcltrcl 43701 cotrclrcl 43704 |
Copyright terms: Public domain | W3C validator |