| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12449 | . 2 class ℕ0 | |
| 2 | cn 12193 | . . 3 class ℕ | |
| 3 | cc0 11075 | . . . 4 class 0 | |
| 4 | 3 | csn 4592 | . . 3 class {0} |
| 5 | 2, 4 | cun 3915 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12451 nnssnn0 12452 nn0ssre 12453 nn0sscn 12454 nn0ex 12455 dfn2 12462 nn0addcl 12484 nn0mulcl 12485 nn0ssz 12559 dvdsprmpweqnn 16863 cply1coe0bi 22196 m2cpminvid2lem 22648 pmatcollpw3fi1 22682 dfrtrcl4 43734 corcltrcl 43735 cotrclrcl 43738 |
| Copyright terms: Public domain | W3C validator |