| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version | ||
| Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn0 12442 | . 2 class ℕ0 | |
| 2 | cn 12186 | . . 3 class ℕ | |
| 3 | cc0 11068 | . . . 4 class 0 | |
| 4 | 3 | csn 4589 | . . 3 class {0} |
| 5 | 2, 4 | cun 3912 | . 2 class (ℕ ∪ {0}) |
| 6 | 1, 5 | wceq 1540 | 1 wff ℕ0 = (ℕ ∪ {0}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: elnn0 12444 nnssnn0 12445 nn0ssre 12446 nn0sscn 12447 nn0ex 12448 dfn2 12455 nn0addcl 12477 nn0mulcl 12478 nn0ssz 12552 dvdsprmpweqnn 16856 cply1coe0bi 22189 m2cpminvid2lem 22641 pmatcollpw3fi1 22675 dfrtrcl4 43727 corcltrcl 43728 cotrclrcl 43731 |
| Copyright terms: Public domain | W3C validator |