MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12389
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12388 . 2 class 0
2 cn 12132 . . 3 class
3 cc0 11013 . . . 4 class 0
43csn 4575 . . 3 class {0}
52, 4cun 3896 . 2 class (ℕ ∪ {0})
61, 5wceq 1541 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12390  nnssnn0  12391  nn0ssre  12392  nn0sscn  12393  nn0ex  12394  dfn2  12401  nn0addcl  12423  nn0mulcl  12424  nn0ssz  12498  dvdsprmpweqnn  16799  cply1coe0bi  22218  m2cpminvid2lem  22670  pmatcollpw3fi1  22704  dfrtrcl4  43855  corcltrcl  43856  cotrclrcl  43859
  Copyright terms: Public domain W3C validator