Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-n0 | Structured version Visualization version GIF version |
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
df-n0 | ⊢ ℕ0 = (ℕ ∪ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cn0 12242 | . 2 class ℕ0 | |
2 | cn 11982 | . . 3 class ℕ | |
3 | cc0 10880 | . . . 4 class 0 | |
4 | 3 | csn 4562 | . . 3 class {0} |
5 | 2, 4 | cun 3886 | . 2 class (ℕ ∪ {0}) |
6 | 1, 5 | wceq 1539 | 1 wff ℕ0 = (ℕ ∪ {0}) |
Colors of variables: wff setvar class |
This definition is referenced by: elnn0 12244 nnssnn0 12245 nn0ssre 12246 nn0sscn 12247 nn0ex 12248 dfn2 12255 nn0addcl 12277 nn0mulcl 12278 nn0ssz 12350 dvdsprmpweqnn 16595 cply1coe0bi 21480 m2cpminvid2lem 21912 pmatcollpw3fi1 21946 dfrtrcl4 41353 corcltrcl 41354 cotrclrcl 41357 |
Copyright terms: Public domain | W3C validator |