MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-n0 Structured version   Visualization version   GIF version

Definition df-n0 12243
Description: Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
df-n0 0 = (ℕ ∪ {0})

Detailed syntax breakdown of Definition df-n0
StepHypRef Expression
1 cn0 12242 . 2 class 0
2 cn 11982 . . 3 class
3 cc0 10880 . . . 4 class 0
43csn 4562 . . 3 class {0}
52, 4cun 3886 . 2 class (ℕ ∪ {0})
61, 5wceq 1539 1 wff 0 = (ℕ ∪ {0})
Colors of variables: wff setvar class
This definition is referenced by:  elnn0  12244  nnssnn0  12245  nn0ssre  12246  nn0sscn  12247  nn0ex  12248  dfn2  12255  nn0addcl  12277  nn0mulcl  12278  nn0ssz  12350  dvdsprmpweqnn  16595  cply1coe0bi  21480  m2cpminvid2lem  21912  pmatcollpw3fi1  21946  dfrtrcl4  41353  corcltrcl  41354  cotrclrcl  41357
  Copyright terms: Public domain W3C validator