Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq1 | ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝐹‘𝑀) = (𝐹‘𝑁)) | |
2 | opeq12 4806 | . . . . 5 ⊢ ((𝑀 = 𝑁 ∧ (𝐹‘𝑀) = (𝐹‘𝑁)) → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) | |
3 | 1, 2 | mpdan 684 | . . . 4 ⊢ (𝑀 = 𝑁 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) |
4 | rdgeq2 8243 | . . . 4 ⊢ (〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) |
6 | 5 | imaeq1d 5968 | . 2 ⊢ (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω)) |
7 | df-seq 13722 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
8 | df-seq 13722 | . 2 ⊢ seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | 1 ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3432 〈cop 4567 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ωcom 7712 reccrdg 8240 1c1 10872 + caddc 10874 seqcseq 13721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fv 6441 df-ov 7278 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seq 13722 |
This theorem is referenced by: seqeq1d 13727 seqfn 13733 seq1 13734 seqp1 13736 seqf1olem2 13763 seqid 13768 seqz 13771 iserex 15368 summolem2 15428 summo 15429 zsum 15430 isumsplit 15552 ntrivcvg 15609 ntrivcvgn0 15610 ntrivcvgtail 15612 ntrivcvgmullem 15613 prodmolem2 15645 prodmo 15646 zprod 15647 fprodntriv 15652 ege2le3 15799 gsumval2a 18369 leibpi 26092 dvradcnv2 41965 binomcxplemnotnn0 41974 stirlinglem12 43626 |
Copyright terms: Public domain | W3C validator |