| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 | ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6906 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝐹‘𝑀) = (𝐹‘𝑁)) | |
| 2 | opeq12 4875 | . . . . 5 ⊢ ((𝑀 = 𝑁 ∧ (𝐹‘𝑀) = (𝐹‘𝑁)) → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) | |
| 3 | 1, 2 | mpdan 687 | . . . 4 ⊢ (𝑀 = 𝑁 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) |
| 4 | rdgeq2 8452 | . . . 4 ⊢ (〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) |
| 6 | 5 | imaeq1d 6077 | . 2 ⊢ (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω)) |
| 7 | df-seq 14043 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 8 | df-seq 14043 | . 2 ⊢ seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω) | |
| 9 | 6, 7, 8 | 3eqtr4g 2802 | 1 ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3480 〈cop 4632 “ cima 5688 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ωcom 7887 reccrdg 8449 1c1 11156 + caddc 11158 seqcseq 14042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-xp 5691 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fv 6569 df-ov 7434 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-seq 14043 |
| This theorem is referenced by: seqeq1d 14048 seqfn 14054 seq1 14055 seqp1 14057 seqf1olem2 14083 seqid 14088 seqz 14091 iserex 15693 summolem2 15752 summo 15753 zsum 15754 isumsplit 15876 ntrivcvg 15933 ntrivcvgn0 15934 ntrivcvgtail 15936 ntrivcvgmullem 15937 prodmolem2 15971 prodmo 15972 zprod 15973 fprodntriv 15978 ege2le3 16126 gsumval2a 18698 leibpi 26985 dvradcnv2 44366 binomcxplemnotnn0 44375 stirlinglem12 46100 |
| Copyright terms: Public domain | W3C validator |