Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq1 | ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6776 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝐹‘𝑀) = (𝐹‘𝑁)) | |
2 | opeq12 4808 | . . . . 5 ⊢ ((𝑀 = 𝑁 ∧ (𝐹‘𝑀) = (𝐹‘𝑁)) → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) | |
3 | 1, 2 | mpdan 684 | . . . 4 ⊢ (𝑀 = 𝑁 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) |
4 | rdgeq2 8241 | . . . 4 ⊢ (〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) |
6 | 5 | imaeq1d 5970 | . 2 ⊢ (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω)) |
7 | df-seq 13720 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
8 | df-seq 13720 | . 2 ⊢ seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω) | |
9 | 6, 7, 8 | 3eqtr4g 2803 | 1 ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3431 〈cop 4569 “ cima 5594 ‘cfv 6435 (class class class)co 7277 ∈ cmpo 7279 ωcom 7712 reccrdg 8238 1c1 10870 + caddc 10872 seqcseq 13719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-xp 5597 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-iota 6393 df-fv 6443 df-ov 7280 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-seq 13720 |
This theorem is referenced by: seqeq1d 13725 seqfn 13731 seq1 13732 seqp1 13734 seqf1olem2 13761 seqid 13766 seqz 13769 iserex 15366 summolem2 15426 summo 15427 zsum 15428 isumsplit 15550 ntrivcvg 15607 ntrivcvgn0 15608 ntrivcvgtail 15610 ntrivcvgmullem 15611 prodmolem2 15643 prodmo 15644 zprod 15645 fprodntriv 15650 ege2le3 15797 gsumval2a 18367 leibpi 26090 dvradcnv2 41935 binomcxplemnotnn0 41944 stirlinglem12 43596 |
Copyright terms: Public domain | W3C validator |