MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1 Structured version   Visualization version   GIF version

Theorem seqeq1 13911
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Proof of Theorem seqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . 5 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
2 opeq12 4826 . . . . 5 ((𝑀 = 𝑁 ∧ (𝐹𝑀) = (𝐹𝑁)) → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
31, 2mpdan 687 . . . 4 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 rdgeq2 8334 . . . 4 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 17 . . 3 (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
65imaeq1d 6010 . 2 (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω))
7 df-seq 13909 . 2 seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
8 df-seq 13909 . 2 seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω)
96, 7, 83eqtr4g 2789 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3436  cop 4583  cima 5622  cfv 6482  (class class class)co 7349  cmpo 7351  ωcom 7799  reccrdg 8331  1c1 11010   + caddc 11012  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fv 6490  df-ov 7352  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seq 13909
This theorem is referenced by:  seqeq1d  13914  seqfn  13920  seq1  13921  seqp1  13923  seqf1olem2  13949  seqid  13954  seqz  13957  iserex  15564  summolem2  15623  summo  15624  zsum  15625  isumsplit  15747  ntrivcvg  15804  ntrivcvgn0  15805  ntrivcvgtail  15807  ntrivcvgmullem  15808  prodmolem2  15842  prodmo  15843  zprod  15844  fprodntriv  15849  ege2le3  15997  gsumval2a  18559  leibpi  26850  dvradcnv2  44320  binomcxplemnotnn0  44329  stirlinglem12  46066
  Copyright terms: Public domain W3C validator