MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1 Structured version   Visualization version   GIF version

Theorem seqeq1 14055
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Proof of Theorem seqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . 5 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
2 opeq12 4899 . . . . 5 ((𝑀 = 𝑁 ∧ (𝐹𝑀) = (𝐹𝑁)) → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
31, 2mpdan 686 . . . 4 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 rdgeq2 8468 . . . 4 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 17 . . 3 (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
65imaeq1d 6088 . 2 (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω))
7 df-seq 14053 . 2 seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
8 df-seq 14053 . 2 seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω)
96, 7, 83eqtr4g 2805 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3488  cop 4654  cima 5703  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  reccrdg 8465  1c1 11185   + caddc 11187  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fv 6581  df-ov 7451  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053
This theorem is referenced by:  seqeq1d  14058  seqfn  14064  seq1  14065  seqp1  14067  seqf1olem2  14093  seqid  14098  seqz  14101  iserex  15705  summolem2  15764  summo  15765  zsum  15766  isumsplit  15888  ntrivcvg  15945  ntrivcvgn0  15946  ntrivcvgtail  15948  ntrivcvgmullem  15949  prodmolem2  15983  prodmo  15984  zprod  15985  fprodntriv  15990  ege2le3  16138  gsumval2a  18723  leibpi  27003  dvradcnv2  44316  binomcxplemnotnn0  44325  stirlinglem12  46006
  Copyright terms: Public domain W3C validator