| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq1 | ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . . 5 ⊢ (𝑀 = 𝑁 → (𝐹‘𝑀) = (𝐹‘𝑁)) | |
| 2 | opeq12 4822 | . . . . 5 ⊢ ((𝑀 = 𝑁 ∧ (𝐹‘𝑀) = (𝐹‘𝑁)) → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) | |
| 3 | 1, 2 | mpdan 687 | . . . 4 ⊢ (𝑀 = 𝑁 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉) |
| 4 | rdgeq2 8326 | . . . 4 ⊢ (〈𝑀, (𝐹‘𝑀)〉 = 〈𝑁, (𝐹‘𝑁)〉 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉)) |
| 6 | 5 | imaeq1d 6003 | . 2 ⊢ (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω)) |
| 7 | df-seq 13904 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 8 | df-seq 13904 | . 2 ⊢ seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑁, (𝐹‘𝑁)〉) “ ω) | |
| 9 | 6, 7, 8 | 3eqtr4g 2791 | 1 ⊢ (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3436 〈cop 4577 “ cima 5614 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ωcom 7791 reccrdg 8323 1c1 11002 + caddc 11004 seqcseq 13903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-iota 6432 df-fv 6484 df-ov 7344 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13904 |
| This theorem is referenced by: seqeq1d 13909 seqfn 13915 seq1 13916 seqp1 13918 seqf1olem2 13944 seqid 13949 seqz 13952 iserex 15559 summolem2 15618 summo 15619 zsum 15620 isumsplit 15742 ntrivcvg 15799 ntrivcvgn0 15800 ntrivcvgtail 15802 ntrivcvgmullem 15803 prodmolem2 15837 prodmo 15838 zprod 15839 fprodntriv 15844 ege2le3 15992 gsumval2a 18588 leibpi 26874 dvradcnv2 44380 binomcxplemnotnn0 44389 stirlinglem12 46123 |
| Copyright terms: Public domain | W3C validator |