![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uz0i | Structured version Visualization version GIF version |
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uz0i | ⊢ (𝐺‘∅) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
2 | 1 | fveq1i 6921 | . 2 ⊢ (𝐺‘∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) |
3 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
4 | fr0g 8492 | . . 3 ⊢ (𝐶 ∈ ℤ → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶 |
6 | 2, 5 | eqtri 2768 | 1 ⊢ (𝐺‘∅) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 ωcom 7903 reccrdg 8465 1c1 11185 + caddc 11187 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: om2uzuzi 14000 om2uzrani 14003 om2uzrdg 14007 uzrdgxfr 14018 fzennn 14019 axdc4uzlem 14034 hashgadd 14426 |
Copyright terms: Public domain | W3C validator |