MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uz0i Structured version   Visualization version   GIF version

Theorem om2uz0i 13310
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers 0 or 1 for the upper integers ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for 0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uz0i (𝐺‘∅) = 𝐶
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uz0i
StepHypRef Expression
1 om2uz.2 . . 3 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
21fveq1i 6653 . 2 (𝐺‘∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅)
3 om2uz.1 . . 3 𝐶 ∈ ℤ
4 fr0g 8058 . . 3 (𝐶 ∈ ℤ → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶)
53, 4ax-mp 5 . 2 ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶
62, 5eqtri 2845 1 (𝐺‘∅) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2114  Vcvv 3469  c0 4265  cmpt 5122  cres 5534  cfv 6334  (class class class)co 7140  ωcom 7565  reccrdg 8032  1c1 10527   + caddc 10529  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033
This theorem is referenced by:  om2uzuzi  13312  om2uzrani  13315  om2uzrdg  13319  uzrdgxfr  13330  fzennn  13331  axdc4uzlem  13346  hashgadd  13734
  Copyright terms: Public domain W3C validator