![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uz0i | Structured version Visualization version GIF version |
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uz0i | ⊢ (𝐺‘∅) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
2 | 1 | fveq1i 6892 | . 2 ⊢ (𝐺‘∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) |
3 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
4 | fr0g 8442 | . . 3 ⊢ (𝐶 ∈ ℤ → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶 |
6 | 2, 5 | eqtri 2759 | 1 ⊢ (𝐺‘∅) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ↦ cmpt 5231 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 ωcom 7859 reccrdg 8415 1c1 11117 + caddc 11119 ℤcz 12565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 |
This theorem is referenced by: om2uzuzi 13921 om2uzrani 13924 om2uzrdg 13928 uzrdgxfr 13939 fzennn 13940 axdc4uzlem 13955 hashgadd 14344 |
Copyright terms: Public domain | W3C validator |