Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om2uz0i | Structured version Visualization version GIF version |
Description: The mapping 𝐺 is a one-to-one mapping from ω onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number 𝐶 (normally 0 for the upper integers ℕ0 or 1 for the upper integers ℕ), 1 maps to 𝐶 + 1, etc. This theorem shows the value of 𝐺 at ordinal natural number zero. (This series of theorems generalizes an earlier series for ℕ0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uz0i | ⊢ (𝐺‘∅) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
2 | 1 | fveq1i 6775 | . 2 ⊢ (𝐺‘∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) |
3 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
4 | fr0g 8267 | . . 3 ⊢ (𝐶 ∈ ℤ → ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)‘∅) = 𝐶 |
6 | 2, 5 | eqtri 2766 | 1 ⊢ (𝐺‘∅) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 ωcom 7712 reccrdg 8240 1c1 10872 + caddc 10874 ℤcz 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 |
This theorem is referenced by: om2uzuzi 13669 om2uzrani 13672 om2uzrdg 13676 uzrdgxfr 13687 fzennn 13688 axdc4uzlem 13703 hashgadd 14092 |
Copyright terms: Public domain | W3C validator |