| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13909 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8335 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9533 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6568 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2827 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 〈cop 4582 “ cima 5619 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 reccrdg 8328 1c1 11007 + caddc 11009 seqcseq 13908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13909 |
| This theorem is referenced by: seqshft 14992 clim2ser 15562 clim2ser2 15563 isermulc2 15565 isershft 15571 isercoll 15575 isercoll2 15576 iseralt 15592 fsumcvg 15619 sumrb 15620 isumclim3 15666 isumadd 15674 cvgcmp 15723 cvgcmpce 15725 trireciplem 15769 geolim 15777 geolim2 15778 geo2lim 15782 geomulcvg 15783 geoisum1c 15787 cvgrat 15790 mertens 15793 clim2prod 15795 clim2div 15796 ntrivcvg 15804 ntrivcvgfvn0 15806 ntrivcvgmullem 15808 fprodcvg 15837 prodrblem2 15838 fprodntriv 15849 iprodclim3 15907 iprodmul 15910 efcj 15999 eftlub 16018 eflegeo 16030 rpnnen2lem5 16127 mulgfvalALT 18983 ovoliunnul 25436 ioombl1lem4 25490 vitalilem5 25541 dvnfval 25852 aaliou3lem3 26280 dvradcnv 26358 pserulm 26359 abelthlem6 26374 abelthlem7 26376 abelthlem9 26378 logtayllem 26596 logtayl 26597 atantayl 26875 leibpilem2 26879 leibpi 26880 log2tlbnd 26883 zetacvg 26953 lgamgulm2 26974 lgamcvglem 26978 lgamcvg2 26993 dchrisumlem3 27430 dchrisum0re 27452 esumcvgsum 34099 sseqval 34399 iprodgam 35784 faclim 35788 knoppcnlem6 36538 knoppcnlem9 36541 knoppndvlem4 36555 knoppndvlem6 36557 knoppf 36575 geomcau 37805 dvradcnv2 44386 binomcxplemnotnn0 44395 sumnnodd 45676 stirlinglem5 46122 stirlinglem7 46124 fourierdlem112 46262 sge0isum 46471 itcoval 48699 |
| Copyright terms: Public domain | W3C validator |