| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 14018 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8428 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9655 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6622 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2830 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 〈cop 4607 “ cima 5657 Fun wfun 6524 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ωcom 7859 reccrdg 8421 1c1 11128 + caddc 11130 seqcseq 14017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-inf2 9653 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-seq 14018 |
| This theorem is referenced by: seqshft 15102 clim2ser 15669 clim2ser2 15670 isermulc2 15672 isershft 15678 isercoll 15682 isercoll2 15683 iseralt 15699 fsumcvg 15726 sumrb 15727 isumclim3 15773 isumadd 15781 cvgcmp 15830 cvgcmpce 15832 trireciplem 15876 geolim 15884 geolim2 15885 geo2lim 15889 geomulcvg 15890 geoisum1c 15894 cvgrat 15897 mertens 15900 clim2prod 15902 clim2div 15903 ntrivcvg 15911 ntrivcvgfvn0 15913 ntrivcvgmullem 15915 fprodcvg 15944 prodrblem2 15945 fprodntriv 15956 iprodclim3 16014 iprodmul 16017 efcj 16106 eftlub 16125 eflegeo 16137 rpnnen2lem5 16234 mulgfvalALT 19051 ovoliunnul 25458 ioombl1lem4 25512 vitalilem5 25563 dvnfval 25874 aaliou3lem3 26302 dvradcnv 26380 pserulm 26381 abelthlem6 26396 abelthlem7 26398 abelthlem9 26400 logtayllem 26618 logtayl 26619 atantayl 26897 leibpilem2 26901 leibpi 26902 log2tlbnd 26905 zetacvg 26975 lgamgulm2 26996 lgamcvglem 27000 lgamcvg2 27015 dchrisumlem3 27452 dchrisum0re 27474 esumcvgsum 34065 sseqval 34366 iprodgam 35705 faclim 35709 knoppcnlem6 36462 knoppcnlem9 36465 knoppndvlem4 36479 knoppndvlem6 36481 knoppf 36499 geomcau 37729 dvradcnv2 44319 binomcxplemnotnn0 44328 sumnnodd 45607 stirlinglem5 46055 stirlinglem7 46057 fourierdlem112 46195 sge0isum 46404 itcoval 48589 |
| Copyright terms: Public domain | W3C validator |