| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13913 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8343 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9542 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6575 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2829 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 〈cop 4583 “ cima 5624 Fun wfun 6482 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ωcom 7804 reccrdg 8336 1c1 11016 + caddc 11018 seqcseq 13912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 ax-inf2 9540 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-seq 13913 |
| This theorem is referenced by: seqshft 14996 clim2ser 15566 clim2ser2 15567 isermulc2 15569 isershft 15575 isercoll 15579 isercoll2 15580 iseralt 15596 fsumcvg 15623 sumrb 15624 isumclim3 15670 isumadd 15678 cvgcmp 15727 cvgcmpce 15729 trireciplem 15773 geolim 15781 geolim2 15782 geo2lim 15786 geomulcvg 15787 geoisum1c 15791 cvgrat 15794 mertens 15797 clim2prod 15799 clim2div 15800 ntrivcvg 15808 ntrivcvgfvn0 15810 ntrivcvgmullem 15812 fprodcvg 15841 prodrblem2 15842 fprodntriv 15853 iprodclim3 15911 iprodmul 15914 efcj 16003 eftlub 16022 eflegeo 16034 rpnnen2lem5 16131 mulgfvalALT 18987 ovoliunnul 25438 ioombl1lem4 25492 vitalilem5 25543 dvnfval 25854 aaliou3lem3 26282 dvradcnv 26360 pserulm 26361 abelthlem6 26376 abelthlem7 26378 abelthlem9 26380 logtayllem 26598 logtayl 26599 atantayl 26877 leibpilem2 26881 leibpi 26882 log2tlbnd 26885 zetacvg 26955 lgamgulm2 26976 lgamcvglem 26980 lgamcvg2 26995 dchrisumlem3 27432 dchrisum0re 27454 esumcvgsum 34124 sseqval 34424 iprodgam 35809 faclim 35813 knoppcnlem6 36565 knoppcnlem9 36568 knoppndvlem4 36582 knoppndvlem6 36584 knoppf 36602 geomcau 37822 dvradcnv2 44467 binomcxplemnotnn0 44476 sumnnodd 45757 stirlinglem5 46203 stirlinglem7 46205 fourierdlem112 46343 sge0isum 46552 itcoval 48789 |
| Copyright terms: Public domain | W3C validator |