![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 14039 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | rdgfun 8454 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
3 | omex 9680 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6653 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2834 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 〈cop 4636 “ cima 5691 Fun wfun 6556 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ωcom 7886 reccrdg 8447 1c1 11153 + caddc 11155 seqcseq 14038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-seq 14039 |
This theorem is referenced by: seqshft 15120 clim2ser 15687 clim2ser2 15688 isermulc2 15690 isershft 15696 isercoll 15700 isercoll2 15701 iseralt 15717 fsumcvg 15744 sumrb 15745 isumclim3 15791 isumadd 15799 cvgcmp 15848 cvgcmpce 15850 trireciplem 15894 geolim 15902 geolim2 15903 geo2lim 15907 geomulcvg 15908 geoisum1c 15912 cvgrat 15915 mertens 15918 clim2prod 15920 clim2div 15921 ntrivcvg 15929 ntrivcvgfvn0 15931 ntrivcvgmullem 15933 fprodcvg 15962 prodrblem2 15963 fprodntriv 15974 iprodclim3 16032 iprodmul 16035 efcj 16124 eftlub 16141 eflegeo 16153 rpnnen2lem5 16250 mulgfvalALT 19100 ovoliunnul 25555 ioombl1lem4 25609 vitalilem5 25660 dvnfval 25972 aaliou3lem3 26400 dvradcnv 26478 pserulm 26479 abelthlem6 26494 abelthlem7 26496 abelthlem9 26498 logtayllem 26715 logtayl 26716 atantayl 26994 leibpilem2 26998 leibpi 26999 log2tlbnd 27002 zetacvg 27072 lgamgulm2 27093 lgamcvglem 27097 lgamcvg2 27112 dchrisumlem3 27549 dchrisum0re 27571 esumcvgsum 34068 sseqval 34369 iprodgam 35721 faclim 35725 knoppcnlem6 36480 knoppcnlem9 36483 knoppndvlem4 36497 knoppndvlem6 36499 knoppf 36517 geomcau 37745 dvradcnv2 44342 binomcxplemnotnn0 44351 sumnnodd 45585 stirlinglem5 46033 stirlinglem7 46035 fourierdlem112 46173 sge0isum 46382 itcoval 48510 |
Copyright terms: Public domain | W3C validator |