![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13966 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) | |
2 | rdgfun 8415 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
3 | omex 9637 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6634 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 690 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2829 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 “ cima 5679 Fun wfun 6537 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ωcom 7854 reccrdg 8408 1c1 11110 + caddc 11112 seqcseq 13965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-seq 13966 |
This theorem is referenced by: seqshft 15031 clim2ser 15600 clim2ser2 15601 isermulc2 15603 isershft 15609 isercoll 15613 isercoll2 15614 iseralt 15630 fsumcvg 15657 sumrb 15658 isumclim3 15704 isumadd 15712 cvgcmp 15761 cvgcmpce 15763 trireciplem 15807 geolim 15815 geolim2 15816 geo2lim 15820 geomulcvg 15821 geoisum1c 15825 cvgrat 15828 mertens 15831 clim2prod 15833 clim2div 15834 ntrivcvg 15842 ntrivcvgfvn0 15844 ntrivcvgmullem 15846 fprodcvg 15873 prodrblem2 15874 fprodntriv 15885 iprodclim3 15943 iprodmul 15946 efcj 16034 eftlub 16051 eflegeo 16063 rpnnen2lem5 16160 mulgfvalALT 18952 ovoliunnul 25023 ioombl1lem4 25077 vitalilem5 25128 dvnfval 25438 aaliou3lem3 25856 dvradcnv 25932 pserulm 25933 abelthlem6 25947 abelthlem7 25949 abelthlem9 25951 logtayllem 26166 logtayl 26167 atantayl 26439 leibpilem2 26443 leibpi 26444 log2tlbnd 26447 zetacvg 26516 lgamgulm2 26537 lgamcvglem 26541 lgamcvg2 26556 dchrisumlem3 26991 dchrisum0re 27013 esumcvgsum 33081 sseqval 33382 iprodgam 34707 faclim 34711 knoppcnlem6 35369 knoppcnlem9 35372 knoppndvlem4 35386 knoppndvlem6 35388 knoppf 35406 geomcau 36622 dvradcnv2 43096 binomcxplemnotnn0 43105 sumnnodd 44336 stirlinglem5 44784 stirlinglem7 44786 fourierdlem112 44924 sge0isum 45133 itcoval 47337 |
Copyright terms: Public domain | W3C validator |