![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 14053 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | rdgfun 8472 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
3 | omex 9712 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6664 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2840 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 〈cop 4654 “ cima 5703 Fun wfun 6567 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 reccrdg 8465 1c1 11185 + caddc 11187 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 |
This theorem is referenced by: seqshft 15134 clim2ser 15703 clim2ser2 15704 isermulc2 15706 isershft 15712 isercoll 15716 isercoll2 15717 iseralt 15733 fsumcvg 15760 sumrb 15761 isumclim3 15807 isumadd 15815 cvgcmp 15864 cvgcmpce 15866 trireciplem 15910 geolim 15918 geolim2 15919 geo2lim 15923 geomulcvg 15924 geoisum1c 15928 cvgrat 15931 mertens 15934 clim2prod 15936 clim2div 15937 ntrivcvg 15945 ntrivcvgfvn0 15947 ntrivcvgmullem 15949 fprodcvg 15978 prodrblem2 15979 fprodntriv 15990 iprodclim3 16048 iprodmul 16051 efcj 16140 eftlub 16157 eflegeo 16169 rpnnen2lem5 16266 mulgfvalALT 19110 ovoliunnul 25561 ioombl1lem4 25615 vitalilem5 25666 dvnfval 25978 aaliou3lem3 26404 dvradcnv 26482 pserulm 26483 abelthlem6 26498 abelthlem7 26500 abelthlem9 26502 logtayllem 26719 logtayl 26720 atantayl 26998 leibpilem2 27002 leibpi 27003 log2tlbnd 27006 zetacvg 27076 lgamgulm2 27097 lgamcvglem 27101 lgamcvg2 27116 dchrisumlem3 27553 dchrisum0re 27575 esumcvgsum 34052 sseqval 34353 iprodgam 35704 faclim 35708 knoppcnlem6 36464 knoppcnlem9 36467 knoppndvlem4 36481 knoppndvlem6 36483 knoppf 36501 geomcau 37719 dvradcnv2 44316 binomcxplemnotnn0 44325 sumnnodd 45551 stirlinglem5 45999 stirlinglem7 46001 fourierdlem112 46139 sge0isum 46348 itcoval 48395 |
Copyright terms: Public domain | W3C validator |