![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13125 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | rdgfun 7797 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
3 | omex 8839 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6222 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 682 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2855 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3398 〈cop 4404 “ cima 5360 Fun wfun 6131 ‘cfv 6137 (class class class)co 6924 ↦ cmpt2 6926 ωcom 7345 reccrdg 7790 1c1 10275 + caddc 10277 seqcseq 13124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-seq 13125 |
This theorem is referenced by: seqshft 14238 clim2ser 14802 clim2ser2 14803 isermulc2 14805 isershft 14811 isercoll 14815 isercoll2 14816 iseralt 14832 fsumcvg 14859 sumrb 14860 isumclim3 14904 isumadd 14912 cvgcmp 14961 cvgcmpce 14963 trireciplem 15007 geolim 15014 geolim2 15015 geo2lim 15019 geomulcvg 15020 geoisum1c 15024 cvgrat 15027 mertens 15030 clim2prod 15032 clim2div 15033 ntrivcvg 15041 ntrivcvgfvn0 15043 ntrivcvgmullem 15045 fprodcvg 15072 prodrblem2 15073 fprodntriv 15084 iprodclim3 15142 iprodmul 15145 efcj 15233 eftlub 15250 eflegeo 15262 rpnnen2lem5 15360 mulgfval 17940 ovoliunnul 23722 ioombl1lem4 23776 vitalilem5 23827 dvnfval 24133 aaliou3lem3 24547 dvradcnv 24623 pserulm 24624 abelthlem6 24638 abelthlem7 24640 abelthlem9 24642 logtayllem 24853 logtayl 24854 atantayl 25126 leibpilem2 25131 leibpi 25132 log2tlbnd 25135 zetacvg 25204 lgamgulm2 25225 lgamcvglem 25229 lgamcvg2 25244 dchrisumlem3 25649 dchrisum0re 25671 esumcvgsum 30756 sseqval 31057 iprodgam 32230 faclim 32234 knoppcnlem6 33079 knoppcnlem9 33082 knoppndvlem4 33096 knoppndvlem6 33098 knoppf 33116 geomcau 34188 dvradcnv2 39516 binomcxplemnotnn0 39525 sumnnodd 40784 stirlinglem5 41236 stirlinglem7 41238 fourierdlem112 41376 sge0isum 41582 |
Copyright terms: Public domain | W3C validator |