| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13927 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8345 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9558 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6573 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2824 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 〈cop 4585 “ cima 5626 Fun wfun 6480 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 ωcom 7806 reccrdg 8338 1c1 11029 + caddc 11031 seqcseq 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seq 13927 |
| This theorem is referenced by: seqshft 15010 clim2ser 15580 clim2ser2 15581 isermulc2 15583 isershft 15589 isercoll 15593 isercoll2 15594 iseralt 15610 fsumcvg 15637 sumrb 15638 isumclim3 15684 isumadd 15692 cvgcmp 15741 cvgcmpce 15743 trireciplem 15787 geolim 15795 geolim2 15796 geo2lim 15800 geomulcvg 15801 geoisum1c 15805 cvgrat 15808 mertens 15811 clim2prod 15813 clim2div 15814 ntrivcvg 15822 ntrivcvgfvn0 15824 ntrivcvgmullem 15826 fprodcvg 15855 prodrblem2 15856 fprodntriv 15867 iprodclim3 15925 iprodmul 15928 efcj 16017 eftlub 16036 eflegeo 16048 rpnnen2lem5 16145 mulgfvalALT 18967 ovoliunnul 25424 ioombl1lem4 25478 vitalilem5 25529 dvnfval 25840 aaliou3lem3 26268 dvradcnv 26346 pserulm 26347 abelthlem6 26362 abelthlem7 26364 abelthlem9 26366 logtayllem 26584 logtayl 26585 atantayl 26863 leibpilem2 26867 leibpi 26868 log2tlbnd 26871 zetacvg 26941 lgamgulm2 26962 lgamcvglem 26966 lgamcvg2 26981 dchrisumlem3 27418 dchrisum0re 27440 esumcvgsum 34057 sseqval 34358 iprodgam 35717 faclim 35721 knoppcnlem6 36474 knoppcnlem9 36477 knoppndvlem4 36491 knoppndvlem6 36493 knoppf 36511 geomcau 37741 dvradcnv2 44323 binomcxplemnotnn0 44332 sumnnodd 45615 stirlinglem5 46063 stirlinglem7 46065 fourierdlem112 46203 sge0isum 46412 itcoval 48650 |
| Copyright terms: Public domain | W3C validator |