![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13967 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) | |
2 | rdgfun 8416 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
3 | omex 9638 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6635 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 691 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2830 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ⟨cop 4635 “ cima 5680 Fun wfun 6538 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 ωcom 7855 reccrdg 8409 1c1 11111 + caddc 11113 seqcseq 13966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-seq 13967 |
This theorem is referenced by: seqshft 15032 clim2ser 15601 clim2ser2 15602 isermulc2 15604 isershft 15610 isercoll 15614 isercoll2 15615 iseralt 15631 fsumcvg 15658 sumrb 15659 isumclim3 15705 isumadd 15713 cvgcmp 15762 cvgcmpce 15764 trireciplem 15808 geolim 15816 geolim2 15817 geo2lim 15821 geomulcvg 15822 geoisum1c 15826 cvgrat 15829 mertens 15832 clim2prod 15834 clim2div 15835 ntrivcvg 15843 ntrivcvgfvn0 15845 ntrivcvgmullem 15847 fprodcvg 15874 prodrblem2 15875 fprodntriv 15886 iprodclim3 15944 iprodmul 15947 efcj 16035 eftlub 16052 eflegeo 16064 rpnnen2lem5 16161 mulgfvalALT 18953 ovoliunnul 25024 ioombl1lem4 25078 vitalilem5 25129 dvnfval 25439 aaliou3lem3 25857 dvradcnv 25933 pserulm 25934 abelthlem6 25948 abelthlem7 25950 abelthlem9 25952 logtayllem 26167 logtayl 26168 atantayl 26442 leibpilem2 26446 leibpi 26447 log2tlbnd 26450 zetacvg 26519 lgamgulm2 26540 lgamcvglem 26544 lgamcvg2 26559 dchrisumlem3 26994 dchrisum0re 27016 esumcvgsum 33086 sseqval 33387 iprodgam 34712 faclim 34716 knoppcnlem6 35374 knoppcnlem9 35377 knoppndvlem4 35391 knoppndvlem6 35393 knoppf 35411 geomcau 36627 dvradcnv2 43106 binomcxplemnotnn0 43115 sumnnodd 44346 stirlinglem5 44794 stirlinglem7 44796 fourierdlem112 44934 sge0isum 45143 itcoval 47347 |
Copyright terms: Public domain | W3C validator |