Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13650 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | rdgfun 8218 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
3 | omex 9331 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6504 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 688 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2835 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 〈cop 4564 “ cima 5583 Fun wfun 6412 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 reccrdg 8211 1c1 10803 + caddc 10805 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 |
This theorem is referenced by: seqshft 14724 clim2ser 15294 clim2ser2 15295 isermulc2 15297 isershft 15303 isercoll 15307 isercoll2 15308 iseralt 15324 fsumcvg 15352 sumrb 15353 isumclim3 15399 isumadd 15407 cvgcmp 15456 cvgcmpce 15458 trireciplem 15502 geolim 15510 geolim2 15511 geo2lim 15515 geomulcvg 15516 geoisum1c 15520 cvgrat 15523 mertens 15526 clim2prod 15528 clim2div 15529 ntrivcvg 15537 ntrivcvgfvn0 15539 ntrivcvgmullem 15541 fprodcvg 15568 prodrblem2 15569 fprodntriv 15580 iprodclim3 15638 iprodmul 15641 efcj 15729 eftlub 15746 eflegeo 15758 rpnnen2lem5 15855 mulgfvalALT 18618 ovoliunnul 24576 ioombl1lem4 24630 vitalilem5 24681 dvnfval 24991 aaliou3lem3 25409 dvradcnv 25485 pserulm 25486 abelthlem6 25500 abelthlem7 25502 abelthlem9 25504 logtayllem 25719 logtayl 25720 atantayl 25992 leibpilem2 25996 leibpi 25997 log2tlbnd 26000 zetacvg 26069 lgamgulm2 26090 lgamcvglem 26094 lgamcvg2 26109 dchrisumlem3 26544 dchrisum0re 26566 esumcvgsum 31956 sseqval 32255 iprodgam 33614 faclim 33618 knoppcnlem6 34605 knoppcnlem9 34608 knoppndvlem4 34622 knoppndvlem6 34624 knoppf 34642 geomcau 35844 dvradcnv2 41854 binomcxplemnotnn0 41863 sumnnodd 43061 stirlinglem5 43509 stirlinglem7 43511 fourierdlem112 43649 sge0isum 43855 itcoval 45895 |
Copyright terms: Public domain | W3C validator |