| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13967 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8384 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9596 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6603 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2824 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 〈cop 4595 “ cima 5641 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 reccrdg 8377 1c1 11069 + caddc 11071 seqcseq 13966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 |
| This theorem is referenced by: seqshft 15051 clim2ser 15621 clim2ser2 15622 isermulc2 15624 isershft 15630 isercoll 15634 isercoll2 15635 iseralt 15651 fsumcvg 15678 sumrb 15679 isumclim3 15725 isumadd 15733 cvgcmp 15782 cvgcmpce 15784 trireciplem 15828 geolim 15836 geolim2 15837 geo2lim 15841 geomulcvg 15842 geoisum1c 15846 cvgrat 15849 mertens 15852 clim2prod 15854 clim2div 15855 ntrivcvg 15863 ntrivcvgfvn0 15865 ntrivcvgmullem 15867 fprodcvg 15896 prodrblem2 15897 fprodntriv 15908 iprodclim3 15966 iprodmul 15969 efcj 16058 eftlub 16077 eflegeo 16089 rpnnen2lem5 16186 mulgfvalALT 19002 ovoliunnul 25408 ioombl1lem4 25462 vitalilem5 25513 dvnfval 25824 aaliou3lem3 26252 dvradcnv 26330 pserulm 26331 abelthlem6 26346 abelthlem7 26348 abelthlem9 26350 logtayllem 26568 logtayl 26569 atantayl 26847 leibpilem2 26851 leibpi 26852 log2tlbnd 26855 zetacvg 26925 lgamgulm2 26946 lgamcvglem 26950 lgamcvg2 26965 dchrisumlem3 27402 dchrisum0re 27424 esumcvgsum 34078 sseqval 34379 iprodgam 35729 faclim 35733 knoppcnlem6 36486 knoppcnlem9 36489 knoppndvlem4 36503 knoppndvlem6 36505 knoppf 36523 geomcau 37753 dvradcnv2 44336 binomcxplemnotnn0 44345 sumnnodd 45628 stirlinglem5 46076 stirlinglem7 46078 fourierdlem112 46216 sge0isum 46425 itcoval 48650 |
| Copyright terms: Public domain | W3C validator |