| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13974 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8387 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9603 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6606 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2825 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 〈cop 4598 “ cima 5644 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ωcom 7845 reccrdg 8380 1c1 11076 + caddc 11078 seqcseq 13973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seq 13974 |
| This theorem is referenced by: seqshft 15058 clim2ser 15628 clim2ser2 15629 isermulc2 15631 isershft 15637 isercoll 15641 isercoll2 15642 iseralt 15658 fsumcvg 15685 sumrb 15686 isumclim3 15732 isumadd 15740 cvgcmp 15789 cvgcmpce 15791 trireciplem 15835 geolim 15843 geolim2 15844 geo2lim 15848 geomulcvg 15849 geoisum1c 15853 cvgrat 15856 mertens 15859 clim2prod 15861 clim2div 15862 ntrivcvg 15870 ntrivcvgfvn0 15872 ntrivcvgmullem 15874 fprodcvg 15903 prodrblem2 15904 fprodntriv 15915 iprodclim3 15973 iprodmul 15976 efcj 16065 eftlub 16084 eflegeo 16096 rpnnen2lem5 16193 mulgfvalALT 19009 ovoliunnul 25415 ioombl1lem4 25469 vitalilem5 25520 dvnfval 25831 aaliou3lem3 26259 dvradcnv 26337 pserulm 26338 abelthlem6 26353 abelthlem7 26355 abelthlem9 26357 logtayllem 26575 logtayl 26576 atantayl 26854 leibpilem2 26858 leibpi 26859 log2tlbnd 26862 zetacvg 26932 lgamgulm2 26953 lgamcvglem 26957 lgamcvg2 26972 dchrisumlem3 27409 dchrisum0re 27431 esumcvgsum 34085 sseqval 34386 iprodgam 35736 faclim 35740 knoppcnlem6 36493 knoppcnlem9 36496 knoppndvlem4 36510 knoppndvlem6 36512 knoppf 36530 geomcau 37760 dvradcnv2 44343 binomcxplemnotnn0 44352 sumnnodd 45635 stirlinglem5 46083 stirlinglem7 46085 fourierdlem112 46223 sge0isum 46432 itcoval 48654 |
| Copyright terms: Public domain | W3C validator |