Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version |
Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13731 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | rdgfun 8256 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
3 | omex 9410 | . . 3 ⊢ ω ∈ V | |
4 | funimaexg 6527 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
5 | 2, 3, 4 | mp2an 689 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
6 | 1, 5 | eqeltri 2836 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3433 〈cop 4568 “ cima 5593 Fun wfun 6431 ‘cfv 6437 (class class class)co 7284 ∈ cmpo 7286 ωcom 7721 reccrdg 8249 1c1 10881 + caddc 10883 seqcseq 13730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-inf2 9408 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-seq 13731 |
This theorem is referenced by: seqshft 14805 clim2ser 15375 clim2ser2 15376 isermulc2 15378 isershft 15384 isercoll 15388 isercoll2 15389 iseralt 15405 fsumcvg 15433 sumrb 15434 isumclim3 15480 isumadd 15488 cvgcmp 15537 cvgcmpce 15539 trireciplem 15583 geolim 15591 geolim2 15592 geo2lim 15596 geomulcvg 15597 geoisum1c 15601 cvgrat 15604 mertens 15607 clim2prod 15609 clim2div 15610 ntrivcvg 15618 ntrivcvgfvn0 15620 ntrivcvgmullem 15622 fprodcvg 15649 prodrblem2 15650 fprodntriv 15661 iprodclim3 15719 iprodmul 15722 efcj 15810 eftlub 15827 eflegeo 15839 rpnnen2lem5 15936 mulgfvalALT 18712 ovoliunnul 24680 ioombl1lem4 24734 vitalilem5 24785 dvnfval 25095 aaliou3lem3 25513 dvradcnv 25589 pserulm 25590 abelthlem6 25604 abelthlem7 25606 abelthlem9 25608 logtayllem 25823 logtayl 25824 atantayl 26096 leibpilem2 26100 leibpi 26101 log2tlbnd 26104 zetacvg 26173 lgamgulm2 26194 lgamcvglem 26198 lgamcvg2 26213 dchrisumlem3 26648 dchrisum0re 26670 esumcvgsum 32065 sseqval 32364 iprodgam 33717 faclim 33721 knoppcnlem6 34687 knoppcnlem9 34690 knoppndvlem4 34704 knoppndvlem6 34706 knoppf 34724 geomcau 35926 dvradcnv2 41972 binomcxplemnotnn0 41981 sumnnodd 43178 stirlinglem5 43626 stirlinglem7 43628 fourierdlem112 43766 sge0isum 43972 itcoval 46018 |
Copyright terms: Public domain | W3C validator |