| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqex | Structured version Visualization version GIF version | ||
| Description: Existence of the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqex | ⊢ seq𝑀( + , 𝐹) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 14025 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | rdgfun 8438 | . . 3 ⊢ Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
| 3 | omex 9665 | . . 3 ⊢ ω ∈ V | |
| 4 | funimaexg 6633 | . . 3 ⊢ ((Fun rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) ∧ ω ∈ V) → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V) | |
| 5 | 2, 3, 4 | mp2an 692 | . 2 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) ∈ V |
| 6 | 1, 5 | eqeltri 2829 | 1 ⊢ seq𝑀( + , 𝐹) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 〈cop 4612 “ cima 5668 Fun wfun 6535 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 reccrdg 8431 1c1 11138 + caddc 11140 seqcseq 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seq 14025 |
| This theorem is referenced by: seqshft 15106 clim2ser 15673 clim2ser2 15674 isermulc2 15676 isershft 15682 isercoll 15686 isercoll2 15687 iseralt 15703 fsumcvg 15730 sumrb 15731 isumclim3 15777 isumadd 15785 cvgcmp 15834 cvgcmpce 15836 trireciplem 15880 geolim 15888 geolim2 15889 geo2lim 15893 geomulcvg 15894 geoisum1c 15898 cvgrat 15901 mertens 15904 clim2prod 15906 clim2div 15907 ntrivcvg 15915 ntrivcvgfvn0 15917 ntrivcvgmullem 15919 fprodcvg 15948 prodrblem2 15949 fprodntriv 15960 iprodclim3 16018 iprodmul 16021 efcj 16110 eftlub 16127 eflegeo 16139 rpnnen2lem5 16236 mulgfvalALT 19057 ovoliunnul 25478 ioombl1lem4 25532 vitalilem5 25583 dvnfval 25894 aaliou3lem3 26322 dvradcnv 26400 pserulm 26401 abelthlem6 26416 abelthlem7 26418 abelthlem9 26420 logtayllem 26637 logtayl 26638 atantayl 26916 leibpilem2 26920 leibpi 26921 log2tlbnd 26924 zetacvg 26994 lgamgulm2 27015 lgamcvglem 27019 lgamcvg2 27034 dchrisumlem3 27471 dchrisum0re 27493 esumcvgsum 34048 sseqval 34349 iprodgam 35701 faclim 35705 knoppcnlem6 36458 knoppcnlem9 36461 knoppndvlem4 36475 knoppndvlem6 36477 knoppf 36495 geomcau 37725 dvradcnv2 44323 binomcxplemnotnn0 44332 sumnnodd 45602 stirlinglem5 46050 stirlinglem7 46052 fourierdlem112 46190 sge0isum 46399 itcoval 48540 |
| Copyright terms: Public domain | W3C validator |