MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqp1 Structured version   Visualization version   GIF version

Theorem seqp1 13957
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seqp1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))

Proof of Theorem seqp1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzel2 12774 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 fveq2 6840 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
32eleq2d 2814 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 seqeq1 13945 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
54fveq1d 6842 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)))
64fveq1d 6842 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑁) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))
76oveq2d 7385 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
85, 7eqeq12d 2745 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))))
93, 8imbi12d 344 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))))
10 0z 12516 . . . . . 6 0 ∈ ℤ
1110elimel 4554 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
12 eqid 2729 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
13 fvex 6853 . . . . 5 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
14 eqid 2729 . . . . 5 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1514seqval 13953 . . . . 5 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1611, 12, 13, 14, 15uzrdgsuci 13901 . . . 4 (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
179, 16dedth 4543 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))))
181, 17mpcom 38 . 2 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
19 elex 3465 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ V)
20 fvex 6853 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
21 fvoveq1 7392 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2221oveq2d 7385 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
23 oveq1 7376 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
24 eqid 2729 . . . 4 (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
25 ovex 7402 . . . 4 ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ V
2622, 23, 24, 25ovmpo 7529 . . 3 ((𝑁 ∈ V ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2719, 20, 26sylancl 586 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2818, 27eqtrd 2764 1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  cop 4591  cmpt 5183  cres 5633  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  reccrdg 8354  0cc0 11044  1c1 11045   + caddc 11047  cz 12505  cuz 12769  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943
This theorem is referenced by:  seqexw  13958  seqp1d  13959  seqm1  13960  seqcl2  13961  seqfveq2  13965  seqshft2  13969  sermono  13975  seqsplit  13976  seqcaopr3  13978  seqf1olem2a  13981  seqf1olem2  13983  seqid2  13989  seqhomo  13990  ser1const  13999  expp1  14009  facp1  14219  seqcoll  14405  relexpsucnnr  14967  climserle  15605  iseraltlem2  15625  iseraltlem3  15626  climcndslem1  15791  climcndslem2  15792  clim2prod  15830  prodfn0  15836  prodfrec  15837  ntrivcvgfvn0  15841  ruclem7  16180  sadcp1  16401  smupp1  16426  seq1st  16517  algrp1  16520  eulerthlem2  16728  pcmpt  16839  gsumsplit1r  18596  gsumprval  18597  mulgfval  18983  mulgnnp1  18996  ovolunlem1a  25430  voliunlem1  25484  volsup  25490  dvnp1  25860  bposlem5  27232  opsqrlem5  32123  esumfzf  34052  esumpcvgval  34061  sseqp1  34379  rrvsum  34438  gsumnunsn  34525  iprodefisumlem  35720  faclimlem1  35723  heiborlem4  37801  heiborlem6  37803  fmul01  45571  fmuldfeqlem1  45573  stoweidlem3  45994  wallispilem4  46059  wallispi2lem1  46062  wallispi2lem2  46063
  Copyright terms: Public domain W3C validator