![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqp1 | Structured version Visualization version GIF version |
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
seqp1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12881 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | fveq2 6903 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
3 | 2 | eleq2d 2812 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
4 | seqeq1 14026 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)) | |
5 | 4 | fveq1d 6905 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1))) |
6 | 4 | fveq1d 6905 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑁) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)) |
7 | 6 | oveq2d 7442 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))) |
8 | 5, 7 | eqeq12d 2742 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))) |
9 | 3, 8 | imbi12d 343 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))))) |
10 | 0z 12623 | . . . . . 6 ⊢ 0 ∈ ℤ | |
11 | 10 | elimel 4602 | . . . . 5 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
12 | eqid 2726 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) | |
13 | fvex 6916 | . . . . 5 ⊢ (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V | |
14 | eqid 2726 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) | |
15 | 14 | seqval 14034 | . . . . 5 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) |
16 | 11, 12, 13, 14, 15 | uzrdgsuci 13982 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))) |
17 | 9, 16 | dedth 4591 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))) |
18 | 1, 17 | mpcom 38 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
19 | elex 3482 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ V) | |
20 | fvex 6916 | . . 3 ⊢ (seq𝑀( + , 𝐹)‘𝑁) ∈ V | |
21 | fvoveq1 7449 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
22 | 21 | oveq2d 7442 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
23 | oveq1 7433 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
24 | eqid 2726 | . . . 4 ⊢ (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
25 | ovex 7459 | . . . 4 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ V | |
26 | 22, 23, 24, 25 | ovmpo 7588 | . . 3 ⊢ ((𝑁 ∈ V ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
27 | 19, 20, 26 | sylancl 584 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
28 | 18, 27 | eqtrd 2766 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ifcif 4533 〈cop 4639 ↦ cmpt 5238 ↾ cres 5686 ‘cfv 6556 (class class class)co 7426 ∈ cmpo 7428 ωcom 7878 reccrdg 8441 0cc0 11160 1c1 11161 + caddc 11163 ℤcz 12612 ℤ≥cuz 12876 seqcseq 14023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-n0 12527 df-z 12613 df-uz 12877 df-seq 14024 |
This theorem is referenced by: seqexw 14039 seqp1d 14040 seqm1 14041 seqcl2 14042 seqfveq2 14046 seqshft2 14050 sermono 14056 seqsplit 14057 seqcaopr3 14059 seqf1olem2a 14062 seqf1olem2 14064 seqid2 14070 seqhomo 14071 ser1const 14080 expp1 14090 facp1 14297 seqcoll 14485 relexpsucnnr 15032 climserle 15669 iseraltlem2 15689 iseraltlem3 15690 climcndslem1 15855 climcndslem2 15856 clim2prod 15894 prodfn0 15900 prodfrec 15901 ntrivcvgfvn0 15905 ruclem7 16240 sadcp1 16457 smupp1 16482 seq1st 16574 algrp1 16577 eulerthlem2 16786 pcmpt 16896 gsumsplit1r 18682 gsumprval 18683 mulgfval 19065 mulgnnp1 19078 ovolunlem1a 25519 voliunlem1 25573 volsup 25579 dvnp1 25949 bposlem5 27320 opsqrlem5 32080 esumfzf 33904 esumpcvgval 33913 sseqp1 34231 rrvsum 34290 gsumnunsn 34389 iprodefisumlem 35564 faclimlem1 35567 heiborlem4 37517 heiborlem6 37519 fmul01 45219 fmuldfeqlem1 45221 stoweidlem3 45642 wallispilem4 45707 wallispi2lem1 45710 wallispi2lem2 45711 |
Copyright terms: Public domain | W3C validator |