| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqp1 | Structured version Visualization version GIF version | ||
| Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqp1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 12866 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 2 | fveq2 6887 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
| 3 | 2 | eleq2d 2819 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
| 4 | seqeq1 14028 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)) | |
| 5 | 4 | fveq1d 6889 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1))) |
| 6 | 4 | fveq1d 6889 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑁) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)) |
| 7 | 6 | oveq2d 7430 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))) |
| 8 | 5, 7 | eqeq12d 2750 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))) |
| 9 | 3, 8 | imbi12d 344 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))))) |
| 10 | 0z 12608 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 11 | 10 | elimel 4577 | . . . . 5 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
| 12 | eqid 2734 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) | |
| 13 | fvex 6900 | . . . . 5 ⊢ (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V | |
| 14 | eqid 2734 | . . . . 5 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) | |
| 15 | 14 | seqval 14036 | . . . . 5 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) |
| 16 | 11, 12, 13, 14, 15 | uzrdgsuci 13984 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))) |
| 17 | 9, 16 | dedth 4566 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))) |
| 18 | 1, 17 | mpcom 38 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) |
| 19 | elex 3485 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ V) | |
| 20 | fvex 6900 | . . 3 ⊢ (seq𝑀( + , 𝐹)‘𝑁) ∈ V | |
| 21 | fvoveq1 7437 | . . . . 5 ⊢ (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1))) | |
| 22 | 21 | oveq2d 7430 | . . . 4 ⊢ (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1)))) |
| 23 | oveq1 7421 | . . . 4 ⊢ (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) | |
| 24 | eqid 2734 | . . . 4 ⊢ (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) | |
| 25 | ovex 7447 | . . . 4 ⊢ ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ V | |
| 26 | 22, 23, 24, 25 | ovmpo 7576 | . . 3 ⊢ ((𝑁 ∈ V ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 27 | 19, 20, 26 | sylancl 586 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| 28 | 18, 27 | eqtrd 2769 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ifcif 4507 〈cop 4614 ↦ cmpt 5207 ↾ cres 5669 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ωcom 7870 reccrdg 8432 0cc0 11138 1c1 11139 + caddc 11141 ℤcz 12597 ℤ≥cuz 12861 seqcseq 14025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-seq 14026 |
| This theorem is referenced by: seqexw 14041 seqp1d 14042 seqm1 14043 seqcl2 14044 seqfveq2 14048 seqshft2 14052 sermono 14058 seqsplit 14059 seqcaopr3 14061 seqf1olem2a 14064 seqf1olem2 14066 seqid2 14072 seqhomo 14073 ser1const 14082 expp1 14092 facp1 14300 seqcoll 14486 relexpsucnnr 15047 climserle 15682 iseraltlem2 15702 iseraltlem3 15703 climcndslem1 15868 climcndslem2 15869 clim2prod 15907 prodfn0 15913 prodfrec 15914 ntrivcvgfvn0 15918 ruclem7 16255 sadcp1 16475 smupp1 16500 seq1st 16591 algrp1 16594 eulerthlem2 16802 pcmpt 16913 gsumsplit1r 18674 gsumprval 18675 mulgfval 19061 mulgnnp1 19074 ovolunlem1a 25486 voliunlem1 25540 volsup 25546 dvnp1 25916 bposlem5 27287 opsqrlem5 32110 esumfzf 34011 esumpcvgval 34020 sseqp1 34338 rrvsum 34397 gsumnunsn 34497 iprodefisumlem 35681 faclimlem1 35684 heiborlem4 37762 heiborlem6 37764 fmul01 45540 fmuldfeqlem1 45542 stoweidlem3 45963 wallispilem4 46028 wallispi2lem1 46031 wallispi2lem2 46032 |
| Copyright terms: Public domain | W3C validator |