MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqp1 Structured version   Visualization version   GIF version

Theorem seqp1 13930
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seqp1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))

Proof of Theorem seqp1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzel2 12776 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 fveq2 6846 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
32eleq2d 2820 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 seqeq1 13918 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
54fveq1d 6848 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)))
64fveq1d 6848 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑁) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))
76oveq2d 7377 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
85, 7eqeq12d 2749 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))))
93, 8imbi12d 345 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))))
10 0z 12518 . . . . . 6 0 ∈ ℤ
1110elimel 4559 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
12 eqid 2733 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
13 fvex 6859 . . . . 5 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
14 eqid 2733 . . . . 5 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1514seqval 13926 . . . . 5 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1611, 12, 13, 14, 15uzrdgsuci 13874 . . . 4 (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
179, 16dedth 4548 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))))
181, 17mpcom 38 . 2 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
19 elex 3465 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ V)
20 fvex 6859 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
21 fvoveq1 7384 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2221oveq2d 7377 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
23 oveq1 7368 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
24 eqid 2733 . . . 4 (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
25 ovex 7394 . . . 4 ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ V
2622, 23, 24, 25ovmpo 7519 . . 3 ((𝑁 ∈ V ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2719, 20, 26sylancl 587 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2818, 27eqtrd 2773 1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3447  ifcif 4490  cop 4596  cmpt 5192  cres 5639  cfv 6500  (class class class)co 7361  cmpo 7363  ωcom 7806  reccrdg 8359  0cc0 11059  1c1 11060   + caddc 11062  cz 12507  cuz 12771  seqcseq 13915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-seq 13916
This theorem is referenced by:  seqexw  13931  seqp1d  13932  seqm1  13934  seqcl2  13935  seqfveq2  13939  seqshft2  13943  sermono  13949  seqsplit  13950  seqcaopr3  13952  seqf1olem2a  13955  seqf1olem2  13957  seqid2  13963  seqhomo  13964  ser1const  13973  expp1  13983  facp1  14187  seqcoll  14372  relexpsucnnr  14919  climserle  15556  iseraltlem2  15576  iseraltlem3  15577  climcndslem1  15742  climcndslem2  15743  clim2prod  15781  prodfn0  15787  prodfrec  15788  ntrivcvgfvn0  15792  ruclem7  16126  sadcp1  16343  smupp1  16368  seq1st  16455  algrp1  16458  eulerthlem2  16662  pcmpt  16772  gsumsplit1r  18550  gsumprval  18551  mulgfval  18882  mulgnnp1  18892  ovolunlem1a  24883  voliunlem1  24937  volsup  24943  dvnp1  25312  bposlem5  26659  opsqrlem5  31135  esumfzf  32732  esumpcvgval  32741  sseqp1  33059  rrvsum  33118  gsumnunsn  33217  iprodefisumlem  34376  faclimlem1  34379  heiborlem4  36323  heiborlem6  36325  fmul01  43911  fmuldfeqlem1  43913  stoweidlem3  44334  wallispilem4  44399  wallispi2lem1  44402  wallispi2lem2  44403
  Copyright terms: Public domain W3C validator