Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13722 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
4 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6784 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
8 | 4, 5, 7 | nfov 7305 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
9 | 3, 8 | nfop 4820 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
10 | 2, 2, 9 | nfmpo 7357 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4820 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
14 | 10, 13 | nfrdg 8245 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
15 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 5977 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
17 | 1, 16 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 Vcvv 3432 〈cop 4567 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ωcom 7712 reccrdg 8240 1c1 10872 + caddc 10874 seqcseq 13721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seq 13722 |
This theorem is referenced by: seqof2 13781 nfsum1 15401 nfsum 15402 nfsumOLD 15403 nfcprod1 15620 nfcprod 15621 lgamgulm2 26185 binomcxplemdvbinom 41971 binomcxplemdvsum 41973 binomcxplemnotnn0 41974 fmuldfeqlem1 43123 fmuldfeq 43124 sumnnodd 43171 stoweidlem51 43592 |
Copyright terms: Public domain | W3C validator |