![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 14040 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
4 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6917 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
8 | 4, 5, 7 | nfov 7461 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
9 | 3, 8 | nfop 4894 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
10 | 2, 2, 9 | nfmpo 7515 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6917 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4894 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
14 | 10, 13 | nfrdg 8453 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
15 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 6088 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
17 | 1, 16 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 Vcvv 3478 〈cop 4637 “ cima 5692 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ωcom 7887 reccrdg 8448 1c1 11154 + caddc 11156 seqcseq 14039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-seq 14040 |
This theorem is referenced by: seqof2 14098 nfsum1 15723 nfsum 15724 nfcprod1 15941 nfcprod 15942 lgamgulm2 27094 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 fmuldfeqlem1 45538 fmuldfeq 45539 sumnnodd 45586 stoweidlem51 46007 |
Copyright terms: Public domain | W3C validator |