![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13916 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) | |
2 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
4 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6856 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
8 | 4, 5, 7 | nfov 7391 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
9 | 3, 8 | nfop 4850 | . . . . 5 ⊢ Ⅎ𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩ |
10 | 2, 2, 9 | nfmpo 7443 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩) |
11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6856 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4850 | . . . 4 ⊢ Ⅎ𝑥⟨𝑀, (𝐹‘𝑀)⟩ |
14 | 10, 13 | nfrdg 8364 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) |
15 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 6025 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) |
17 | 1, 16 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 Vcvv 3447 ⟨cop 4596 “ cima 5640 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 ωcom 7806 reccrdg 8359 1c1 11060 + caddc 11062 seqcseq 13915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-xp 5643 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-iota 6452 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-seq 13916 |
This theorem is referenced by: seqof2 13975 nfsum1 15583 nfsum 15584 nfcprod1 15801 nfcprod 15802 lgamgulm2 26408 binomcxplemdvbinom 42725 binomcxplemdvsum 42727 binomcxplemnotnn0 42728 fmuldfeqlem1 43913 fmuldfeq 43914 sumnnodd 43961 stoweidlem51 44382 |
Copyright terms: Public domain | W3C validator |