| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseq.2 | ⊢ Ⅎ𝑥 + |
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 14025 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 4 | nfcv 2897 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 7 | 6, 3 | nffv 6896 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
| 8 | 4, 5, 7 | nfov 7443 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
| 9 | 3, 8 | nfop 4869 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
| 10 | 2, 2, 9 | nfmpo 7497 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
| 11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
| 12 | 6, 11 | nffv 6896 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 13 | 11, 12 | nfop 4869 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 14 | 10, 13 | nfrdg 8436 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 15 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfima 6066 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 17 | 1, 16 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2882 Vcvv 3463 〈cop 4612 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 reccrdg 8431 1c1 11138 + caddc 11140 seqcseq 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-xp 5671 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-iota 6494 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-seq 14025 |
| This theorem is referenced by: seqof2 14083 nfsum1 15709 nfsum 15710 nfcprod1 15927 nfcprod 15928 lgamgulm2 27016 binomcxplemdvbinom 44344 binomcxplemdvsum 44346 binomcxplemnotnn0 44347 fmuldfeqlem1 45569 fmuldfeq 45570 sumnnodd 45617 stoweidlem51 46038 |
| Copyright terms: Public domain | W3C validator |