MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseq Structured version   Visualization version   GIF version

Theorem nfseq 14029
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seq 14020 . 2 seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2898 . . . . 5 𝑥V
3 nfcv 2898 . . . . . 6 𝑥(𝑧 + 1)
4 nfcv 2898 . . . . . . 7 𝑥𝑤
5 nfseq.2 . . . . . . 7 𝑥 +
6 nfseq.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6886 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
84, 5, 7nfov 7435 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
93, 8nfop 4865 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
102, 2, 9nfmpo 7489 . . . 4 𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
11 nfseq.1 . . . . 5 𝑥𝑀
126, 11nffv 6886 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4865 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8428 . . 3 𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2898 . . 3 𝑥ω
1614, 15nfima 6055 . 2 𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2896 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2883  Vcvv 3459  cop 4607  cima 5657  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  reccrdg 8423  1c1 11130   + caddc 11132  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-xp 5660  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seq 14020
This theorem is referenced by:  seqof2  14078  nfsum1  15706  nfsum  15707  nfcprod1  15924  nfcprod  15925  lgamgulm2  26998  binomcxplemdvbinom  44377  binomcxplemdvsum  44379  binomcxplemnotnn0  44380  fmuldfeqlem1  45611  fmuldfeq  45612  sumnnodd  45659  stoweidlem51  46080
  Copyright terms: Public domain W3C validator