MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseq Structured version   Visualization version   GIF version

Theorem nfseq 14049
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seq 14040 . 2 seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2903 . . . . 5 𝑥V
3 nfcv 2903 . . . . . 6 𝑥(𝑧 + 1)
4 nfcv 2903 . . . . . . 7 𝑥𝑤
5 nfseq.2 . . . . . . 7 𝑥 +
6 nfseq.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6917 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
84, 5, 7nfov 7461 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
93, 8nfop 4894 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
102, 2, 9nfmpo 7515 . . . 4 𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
11 nfseq.1 . . . . 5 𝑥𝑀
126, 11nffv 6917 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4894 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8453 . . 3 𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2903 . . 3 𝑥ω
1614, 15nfima 6088 . 2 𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2901 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  Vcvv 3478  cop 4637  cima 5692  cfv 6563  (class class class)co 7431  cmpo 7433  ωcom 7887  reccrdg 8448  1c1 11154   + caddc 11156  seqcseq 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-seq 14040
This theorem is referenced by:  seqof2  14098  nfsum1  15723  nfsum  15724  nfcprod1  15941  nfcprod  15942  lgamgulm2  27094  binomcxplemdvbinom  44349  binomcxplemdvsum  44351  binomcxplemnotnn0  44352  fmuldfeqlem1  45538  fmuldfeq  45539  sumnnodd  45586  stoweidlem51  46007
  Copyright terms: Public domain W3C validator