MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfseq Structured version   Visualization version   GIF version

Theorem nfseq 13920
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfseq.1 𝑥𝑀
nfseq.2 𝑥 +
nfseq.3 𝑥𝐹
Assertion
Ref Expression
nfseq 𝑥seq𝑀( + , 𝐹)

Proof of Theorem nfseq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seq 13911 . 2 seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
2 nfcv 2895 . . . . 5 𝑥V
3 nfcv 2895 . . . . . 6 𝑥(𝑧 + 1)
4 nfcv 2895 . . . . . . 7 𝑥𝑤
5 nfseq.2 . . . . . . 7 𝑥 +
6 nfseq.3 . . . . . . . 8 𝑥𝐹
76, 3nffv 6838 . . . . . . 7 𝑥(𝐹‘(𝑧 + 1))
84, 5, 7nfov 7382 . . . . . 6 𝑥(𝑤 + (𝐹‘(𝑧 + 1)))
93, 8nfop 4840 . . . . 5 𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩
102, 2, 9nfmpo 7434 . . . 4 𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩)
11 nfseq.1 . . . . 5 𝑥𝑀
126, 11nffv 6838 . . . . 5 𝑥(𝐹𝑀)
1311, 12nfop 4840 . . . 4 𝑥𝑀, (𝐹𝑀)⟩
1410, 13nfrdg 8339 . . 3 𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
15 nfcv 2895 . . 3 𝑥ω
1614, 15nfima 6021 . 2 𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
171, 16nfcxfr 2893 1 𝑥seq𝑀( + , 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2880  Vcvv 3437  cop 4581  cima 5622  cfv 6486  (class class class)co 7352  cmpo 7354  ωcom 7802  reccrdg 8334  1c1 11014   + caddc 11016  seqcseq 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seq 13911
This theorem is referenced by:  seqof2  13969  nfsum1  15599  nfsum  15600  nfcprod1  15817  nfcprod  15818  lgamgulm2  26974  binomcxplemdvbinom  44471  binomcxplemdvsum  44473  binomcxplemnotnn0  44474  fmuldfeqlem1  45707  fmuldfeq  45708  sumnnodd  45755  stoweidlem51  46174
  Copyright terms: Public domain W3C validator