![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 14053 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
2 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
4 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6930 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
8 | 4, 5, 7 | nfov 7478 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
9 | 3, 8 | nfop 4913 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
10 | 2, 2, 9 | nfmpo 7532 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4913 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
14 | 10, 13 | nfrdg 8470 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
15 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 6097 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
17 | 1, 16 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 Vcvv 3488 〈cop 4654 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 reccrdg 8465 1c1 11185 + caddc 11187 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 |
This theorem is referenced by: seqof2 14111 nfsum1 15738 nfsum 15739 nfcprod1 15956 nfcprod 15957 lgamgulm2 27097 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 fmuldfeqlem1 45503 fmuldfeq 45504 sumnnodd 45551 stoweidlem51 45972 |
Copyright terms: Public domain | W3C validator |