![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version |
Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
nfseq.2 | ⊢ Ⅎ𝑥 + |
nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-seq 13966 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) | |
2 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥V | |
3 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
4 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
7 | 6, 3 | nffv 6901 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
8 | 4, 5, 7 | nfov 7438 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
9 | 3, 8 | nfop 4889 | . . . . 5 ⊢ Ⅎ𝑥⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩ |
10 | 2, 2, 9 | nfmpo 7490 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩) |
11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
12 | 6, 11 | nffv 6901 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
13 | 11, 12 | nfop 4889 | . . . 4 ⊢ Ⅎ𝑥⟨𝑀, (𝐹‘𝑀)⟩ |
14 | 10, 13 | nfrdg 8413 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) |
15 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥ω | |
16 | 14, 15 | nfima 6067 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) |
17 | 1, 16 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2883 Vcvv 3474 ⟨cop 4634 “ cima 5679 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ωcom 7854 reccrdg 8408 1c1 11110 + caddc 11112 seqcseq 13965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-iota 6495 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-seq 13966 |
This theorem is referenced by: seqof2 14025 nfsum1 15635 nfsum 15636 nfcprod1 15853 nfcprod 15854 lgamgulm2 26537 binomcxplemdvbinom 43102 binomcxplemdvsum 43104 binomcxplemnotnn0 43105 fmuldfeqlem1 44288 fmuldfeq 44289 sumnnodd 44336 stoweidlem51 44757 |
Copyright terms: Public domain | W3C validator |