| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfseq | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for the sequence builder operation. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfseq.1 | ⊢ Ⅎ𝑥𝑀 |
| nfseq.2 | ⊢ Ⅎ𝑥 + |
| nfseq.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfseq | ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-seq 13906 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥V | |
| 3 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥(𝑧 + 1) | |
| 4 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 5 | nfseq.2 | . . . . . . 7 ⊢ Ⅎ𝑥 + | |
| 6 | nfseq.3 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 | |
| 7 | 6, 3 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘(𝑧 + 1)) |
| 8 | 4, 5, 7 | nfov 7376 | . . . . . 6 ⊢ Ⅎ𝑥(𝑤 + (𝐹‘(𝑧 + 1))) |
| 9 | 3, 8 | nfop 4841 | . . . . 5 ⊢ Ⅎ𝑥〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉 |
| 10 | 2, 2, 9 | nfmpo 7428 | . . . 4 ⊢ Ⅎ𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉) |
| 11 | nfseq.1 | . . . . 5 ⊢ Ⅎ𝑥𝑀 | |
| 12 | 6, 11 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑀) |
| 13 | 11, 12 | nfop 4841 | . . . 4 ⊢ Ⅎ𝑥〈𝑀, (𝐹‘𝑀)〉 |
| 14 | 10, 13 | nfrdg 8333 | . . 3 ⊢ Ⅎ𝑥rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) |
| 15 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑥ω | |
| 16 | 14, 15 | nfima 6017 | . 2 ⊢ Ⅎ𝑥(rec((𝑧 ∈ V, 𝑤 ∈ V ↦ 〈(𝑧 + 1), (𝑤 + (𝐹‘(𝑧 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
| 17 | 1, 16 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥seq𝑀( + , 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 Vcvv 3436 〈cop 4582 “ cima 5619 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 reccrdg 8328 1c1 11004 + caddc 11006 seqcseq 13905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-iota 6437 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seq 13906 |
| This theorem is referenced by: seqof2 13964 nfsum1 15594 nfsum 15595 nfcprod1 15812 nfcprod 15813 lgamgulm2 26971 binomcxplemdvbinom 44385 binomcxplemdvsum 44387 binomcxplemnotnn0 44388 fmuldfeqlem1 45621 fmuldfeq 45622 sumnnodd 45669 stoweidlem51 46088 |
| Copyright terms: Public domain | W3C validator |