MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq3 Structured version   Visualization version   GIF version

Theorem seqeq3 13971
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq3 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))

Proof of Theorem seqeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6857 . . . . . . 7 (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1)))
21oveq2d 7403 . . . . . 6 (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1))))
32opeq2d 4844 . . . . 5 (𝐹 = 𝐺 → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)
43mpoeq3dv 7468 . . . 4 (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩))
5 fveq1 6857 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑀) = (𝐺𝑀))
65opeq2d 4844 . . . 4 (𝐹 = 𝐺 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩)
7 rdgeq12 8381 . . . 4 (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
84, 6, 7syl2anc 584 . . 3 (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
98imaeq1d 6030 . 2 (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩) “ ω))
10 df-seq 13967 . 2 seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
11 df-seq 13967 . 2 seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩) “ ω)
129, 10, 113eqtr4g 2789 1 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3447  cop 4595  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  ωcom 7842  reccrdg 8377  1c1 11069   + caddc 11071  seqcseq 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967
This theorem is referenced by:  seqeq3d  13974  cbvprod  15879  cbvprodv  15880  prodeq1i  15882  iprodmul  15969  geolim3  26247  leibpilem2  26851  basel  27000  faclim  35733  sumeq2si  36190  prodeq2si  36192  cbvprodvw2  36235  ovoliunnfl  37656  voliunnfl  37658  heiborlem10  37814  binomcxplemnn0  44338  binomcxplemdvsum  44344  binomcxp  44346  fourierdlem112  46216  fouriersw  46229  voliunsge0lem  46470
  Copyright terms: Public domain W3C validator