![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq3 | ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6919 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1))) | |
2 | 1 | oveq2d 7464 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1)))) |
3 | 2 | opeq2d 4904 | . . . . 5 ⊢ (𝐹 = 𝐺 → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) |
4 | 3 | mpoeq3dv 7529 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉)) |
5 | fveq1 6919 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑀) = (𝐺‘𝑀)) | |
6 | 5 | opeq2d 4904 | . . . 4 ⊢ (𝐹 = 𝐺 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) |
7 | rdgeq12 8469 | . . . 4 ⊢ (((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) ∧ 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) | |
8 | 4, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) |
9 | 8 | imaeq1d 6088 | . 2 ⊢ (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω)) |
10 | df-seq 14053 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
11 | df-seq 14053 | . 2 ⊢ seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω) | |
12 | 9, 10, 11 | 3eqtr4g 2805 | 1 ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 〈cop 4654 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 reccrdg 8465 1c1 11185 + caddc 11187 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 |
This theorem is referenced by: seqeq3d 14060 cbvprod 15961 cbvprodv 15962 prodeq1i 15964 iprodmul 16051 geolim3 26399 leibpilem2 27002 basel 27151 faclim 35708 sumeq2si 36166 prodeq2si 36168 cbvprodvw2 36213 ovoliunnfl 37622 voliunnfl 37624 heiborlem10 37780 binomcxplemnn0 44318 binomcxplemdvsum 44324 binomcxp 44326 fourierdlem112 46139 fouriersw 46152 voliunsge0lem 46393 |
Copyright terms: Public domain | W3C validator |