| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seqeq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
| Ref | Expression |
|---|---|
| seqeq3 | ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6880 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1))) | |
| 2 | 1 | oveq2d 7426 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1)))) |
| 3 | 2 | opeq2d 4861 | . . . . 5 ⊢ (𝐹 = 𝐺 → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) |
| 4 | 3 | mpoeq3dv 7491 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉)) |
| 5 | fveq1 6880 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑀) = (𝐺‘𝑀)) | |
| 6 | 5 | opeq2d 4861 | . . . 4 ⊢ (𝐹 = 𝐺 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) |
| 7 | rdgeq12 8432 | . . . 4 ⊢ (((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) ∧ 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) | |
| 8 | 4, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) |
| 9 | 8 | imaeq1d 6051 | . 2 ⊢ (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω)) |
| 10 | df-seq 14025 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
| 11 | df-seq 14025 | . 2 ⊢ seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω) | |
| 12 | 9, 10, 11 | 3eqtr4g 2796 | 1 ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3464 〈cop 4612 “ cima 5662 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ωcom 7866 reccrdg 8428 1c1 11135 + caddc 11137 seqcseq 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 |
| This theorem is referenced by: seqeq3d 14032 cbvprod 15934 cbvprodv 15935 prodeq1i 15937 iprodmul 16024 geolim3 26304 leibpilem2 26908 basel 27057 faclim 35768 sumeq2si 36225 prodeq2si 36227 cbvprodvw2 36270 ovoliunnfl 37691 voliunnfl 37693 heiborlem10 37849 binomcxplemnn0 44340 binomcxplemdvsum 44346 binomcxp 44348 fourierdlem112 46214 fouriersw 46227 voliunsge0lem 46468 |
| Copyright terms: Public domain | W3C validator |