Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > seqeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq3 | ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6755 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1))) | |
2 | 1 | oveq2d 7271 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1)))) |
3 | 2 | opeq2d 4808 | . . . . 5 ⊢ (𝐹 = 𝐺 → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) |
4 | 3 | mpoeq3dv 7332 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉)) |
5 | fveq1 6755 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑀) = (𝐺‘𝑀)) | |
6 | 5 | opeq2d 4808 | . . . 4 ⊢ (𝐹 = 𝐺 → 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) |
7 | rdgeq12 8215 | . . . 4 ⊢ (((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉) ∧ 〈𝑀, (𝐹‘𝑀)〉 = 〈𝑀, (𝐺‘𝑀)〉) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) | |
8 | 4, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉)) |
9 | 8 | imaeq1d 5957 | . 2 ⊢ (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω)) |
10 | df-seq 13650 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) | |
11 | df-seq 13650 | . 2 ⊢ seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))〉), 〈𝑀, (𝐺‘𝑀)〉) “ ω) | |
12 | 9, 10, 11 | 3eqtr4g 2804 | 1 ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3422 〈cop 4564 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 reccrdg 8211 1c1 10803 + caddc 10805 seqcseq 13649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-seq 13650 |
This theorem is referenced by: seqeq3d 13657 cbvprod 15553 iprodmul 15641 geolim3 25404 leibpilem2 25996 basel 26144 faclim 33618 ovoliunnfl 35746 voliunnfl 35748 heiborlem10 35905 binomcxplemnn0 41856 binomcxplemdvsum 41862 binomcxp 41864 fourierdlem112 43649 fouriersw 43662 voliunsge0lem 43900 |
Copyright terms: Public domain | W3C validator |