MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq3 Structured version   Visualization version   GIF version

Theorem seqeq3 13369
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq3 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))

Proof of Theorem seqeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 6644 . . . . . . 7 (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1)))
21oveq2d 7151 . . . . . 6 (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1))))
32opeq2d 4772 . . . . 5 (𝐹 = 𝐺 → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)
43mpoeq3dv 7212 . . . 4 (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩))
5 fveq1 6644 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑀) = (𝐺𝑀))
65opeq2d 4772 . . . 4 (𝐹 = 𝐺 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩)
7 rdgeq12 8032 . . . 4 (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
84, 6, 7syl2anc 587 . . 3 (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
98imaeq1d 5895 . 2 (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩) “ ω))
10 df-seq 13365 . 2 seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
11 df-seq 13365 . 2 seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩) “ ω)
129, 10, 113eqtr4g 2858 1 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  Vcvv 3441  cop 4531  cima 5522  cfv 6324  (class class class)co 7135  cmpo 7137  ωcom 7560  reccrdg 8028  1c1 10527   + caddc 10529  seqcseq 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-iota 6283  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seq 13365
This theorem is referenced by:  seqeq3d  13372  cbvprod  15261  iprodmul  15349  geolim3  24935  leibpilem2  25527  basel  25675  faclim  33091  ovoliunnfl  35099  voliunnfl  35101  heiborlem10  35258  binomcxplemnn0  41053  binomcxplemdvsum  41059  binomcxp  41061  fourierdlem112  42860  fouriersw  42873  voliunsge0lem  43111
  Copyright terms: Public domain W3C validator