![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq3 | ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6881 | . . . . . . 7 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1))) | |
2 | 1 | oveq2d 7418 | . . . . . 6 ⊢ (𝐹 = 𝐺 → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1)))) |
3 | 2 | opeq2d 4873 | . . . . 5 ⊢ (𝐹 = 𝐺 → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) |
4 | 3 | mpoeq3dv 7481 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)) |
5 | fveq1 6881 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑀) = (𝐺‘𝑀)) | |
6 | 5 | opeq2d 4873 | . . . 4 ⊢ (𝐹 = 𝐺 → ⟨𝑀, (𝐹‘𝑀)⟩ = ⟨𝑀, (𝐺‘𝑀)⟩) |
7 | rdgeq12 8409 | . . . 4 ⊢ (((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹‘𝑀)⟩ = ⟨𝑀, (𝐺‘𝑀)⟩) → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) | |
8 | 4, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝐹 = 𝐺 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) |
9 | 8 | imaeq1d 6049 | . 2 ⊢ (𝐹 = 𝐺 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩) “ ω)) |
10 | df-seq 13968 | . 2 ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) “ ω) | |
11 | df-seq 13968 | . 2 ⊢ seq𝑀( + , 𝐺) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩) “ ω) | |
12 | 9, 10, 11 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 Vcvv 3466 ⟨cop 4627 “ cima 5670 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 ωcom 7849 reccrdg 8405 1c1 11108 + caddc 11110 seqcseq 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-xp 5673 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-iota 6486 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-seq 13968 |
This theorem is referenced by: seqeq3d 13975 cbvprod 15861 iprodmul 15949 geolim3 26216 leibpilem2 26813 basel 26962 faclim 35238 ovoliunnfl 37033 voliunnfl 37035 heiborlem10 37191 binomcxplemnn0 43657 binomcxplemdvsum 43663 binomcxp 43665 fourierdlem112 45479 fouriersw 45492 voliunsge0lem 45733 |
Copyright terms: Public domain | W3C validator |