MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   GIF version

Theorem climuni 15496
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)

Proof of Theorem climuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12592 . 2 1 ∈ ℤ
2 nnuz 12865 . . . . . . 7 ℕ = (ℤ‘1)
3 1zzd 12593 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 1 ∈ ℤ)
4 climcl 15443 . . . . . . . . . . 11 (𝐹𝐴𝐴 ∈ ℂ)
543ad2ant1 1134 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴 ∈ ℂ)
6 climcl 15443 . . . . . . . . . . 11 (𝐹𝐵𝐵 ∈ ℂ)
763ad2ant2 1135 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐵 ∈ ℂ)
85, 7subcld 11571 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ∈ ℂ)
9 simp3 1139 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴𝐵)
105, 7, 9subne0d 11580 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ≠ 0)
118, 10absrpcld 15395 . . . . . . . 8 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
1211rphalfcld 13028 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ((abs‘(𝐴𝐵)) / 2) ∈ ℝ+)
13 eqidd 2734 . . . . . . 7 (((𝐹𝐴𝐹𝐵𝐴𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
14 simp1 1137 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐴)
152, 3, 12, 13, 14climi 15454 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)))
16 simp2 1138 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐵)
172, 3, 12, 13, 16climi 15454 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))
182rexanuz2 15296 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
1915, 17, 18sylanbrc 584 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
20 nnz 12579 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
21 uzid 12837 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
22 ne0i 4335 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
23 r19.2z 4495 . . . . . . . . . 10 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
2423ex 414 . . . . . . . . 9 ((ℤ𝑗) ≠ ∅ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
2520, 21, 22, 244syl 19 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
26 simpr 486 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
27 simpll 766 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐴 ∈ ℂ)
2826, 27abssubd 15400 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹𝑘))))
2928breq1d 5159 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2)))
30 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐵 ∈ ℂ)
31 subcl 11459 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3231adantr 482 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3332abscld 15383 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
34 abs3lem 15285 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐴𝐵)) ∈ ℝ)) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3527, 30, 26, 33, 34syl22anc 838 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3633ltnrd 11348 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ¬ (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)))
3736pm2.21d 121 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)) → ¬ 1 ∈ ℤ))
3835, 37syld 47 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
3938expd 417 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4029, 39sylbid 239 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4140impr 456 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ))
4241adantld 492 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
4342expimpd 455 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4443rexlimdvw 3161 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4525, 44sylan9r 510 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4645rexlimdva 3156 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
475, 7, 46syl2anc 585 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4819, 47mpd 15 . . . 4 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ¬ 1 ∈ ℤ)
49483expia 1122 . . 3 ((𝐹𝐴𝐹𝐵) → (𝐴𝐵 → ¬ 1 ∈ ℤ))
5049necon4ad 2960 . 2 ((𝐹𝐴𝐹𝐵) → (1 ∈ ℤ → 𝐴 = 𝐵))
511, 50mpi 20 1 ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  c0 4323   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  1c1 11111   < clt 11248  cmin 11444   / cdiv 11871  cn 12212  2c2 12267  cz 12558  cuz 12822  abscabs 15181  cli 15428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432
This theorem is referenced by:  fclim  15497  climeu  15499  summolem2  15662  summo  15663  prodmolem2  15879  prodmo  15880  ef0  16034  efcj  16035  efaddlem  16036  ioombl1lem4  25078  mbflimlem  25184  itg2i1fseq  25273  itg2addlem  25276  plyeq0lem  25724  ulmuni  25904  leibpi  26447  lgamp1  26561  lgam1  26568  sumnnodd  44346  climfveq  44385  climfveqf  44396  climfv  44407  climlimsupcex  44485  climliminflimsupd  44517  stirlinglem15  44804  fouriersw  44947  sge0isum  45143  vonioolem2  45397  vonicclem2  45400
  Copyright terms: Public domain W3C validator