MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   GIF version

Theorem climuni 14911
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)

Proof of Theorem climuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12015 . 2 1 ∈ ℤ
2 nnuz 12284 . . . . . . 7 ℕ = (ℤ‘1)
3 1zzd 12016 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 1 ∈ ℤ)
4 climcl 14858 . . . . . . . . . . 11 (𝐹𝐴𝐴 ∈ ℂ)
543ad2ant1 1129 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴 ∈ ℂ)
6 climcl 14858 . . . . . . . . . . 11 (𝐹𝐵𝐵 ∈ ℂ)
763ad2ant2 1130 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐵 ∈ ℂ)
85, 7subcld 10999 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ∈ ℂ)
9 simp3 1134 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴𝐵)
105, 7, 9subne0d 11008 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ≠ 0)
118, 10absrpcld 14810 . . . . . . . 8 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
1211rphalfcld 12446 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ((abs‘(𝐴𝐵)) / 2) ∈ ℝ+)
13 eqidd 2824 . . . . . . 7 (((𝐹𝐴𝐹𝐵𝐴𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
14 simp1 1132 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐴)
152, 3, 12, 13, 14climi 14869 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)))
16 simp2 1133 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐵)
172, 3, 12, 13, 16climi 14869 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))
182rexanuz2 14711 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
1915, 17, 18sylanbrc 585 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
20 nnz 12007 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
21 uzid 12261 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
22 ne0i 4302 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
23 r19.2z 4442 . . . . . . . . . 10 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
2423ex 415 . . . . . . . . 9 ((ℤ𝑗) ≠ ∅ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
2520, 21, 22, 244syl 19 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
26 simpr 487 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
27 simpll 765 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐴 ∈ ℂ)
2826, 27abssubd 14815 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹𝑘))))
2928breq1d 5078 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2)))
30 simplr 767 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐵 ∈ ℂ)
31 subcl 10887 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3231adantr 483 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3332abscld 14798 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
34 abs3lem 14700 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐴𝐵)) ∈ ℝ)) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3527, 30, 26, 33, 34syl22anc 836 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3633ltnrd 10776 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ¬ (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)))
3736pm2.21d 121 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)) → ¬ 1 ∈ ℤ))
3835, 37syld 47 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
3938expd 418 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4029, 39sylbid 242 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4140impr 457 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ))
4241adantld 493 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
4342expimpd 456 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4443rexlimdvw 3292 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4525, 44sylan9r 511 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4645rexlimdva 3286 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
475, 7, 46syl2anc 586 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4819, 47mpd 15 . . . 4 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ¬ 1 ∈ ℤ)
49483expia 1117 . . 3 ((𝐹𝐴𝐹𝐵) → (𝐴𝐵 → ¬ 1 ∈ ℤ))
5049necon4ad 3037 . 2 ((𝐹𝐴𝐹𝐵) → (1 ∈ ℤ → 𝐴 = 𝐵))
511, 50mpi 20 1 ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  c0 4293   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   < clt 10677  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  cz 11984  cuz 12246  abscabs 14595  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847
This theorem is referenced by:  fclim  14912  climeu  14914  summolem2  15075  summo  15076  prodmolem2  15291  prodmo  15292  ef0  15446  efcj  15447  efaddlem  15448  ioombl1lem4  24164  mbflimlem  24270  itg2i1fseq  24358  itg2addlem  24361  plyeq0lem  24802  ulmuni  24982  leibpi  25522  lgamp1  25636  lgam1  25643  sumnnodd  41918  climfveq  41957  climfveqf  41968  climfv  41979  climlimsupcex  42057  climliminflimsupd  42089  stirlinglem15  42380  fouriersw  42523  sge0isum  42716  vonioolem2  42970  vonicclem2  42973
  Copyright terms: Public domain W3C validator