MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   GIF version

Theorem climuni 15598
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)

Proof of Theorem climuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12673 . 2 1 ∈ ℤ
2 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
3 1zzd 12674 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 1 ∈ ℤ)
4 climcl 15545 . . . . . . . . . . 11 (𝐹𝐴𝐴 ∈ ℂ)
543ad2ant1 1133 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴 ∈ ℂ)
6 climcl 15545 . . . . . . . . . . 11 (𝐹𝐵𝐵 ∈ ℂ)
763ad2ant2 1134 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐵 ∈ ℂ)
85, 7subcld 11647 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ∈ ℂ)
9 simp3 1138 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴𝐵)
105, 7, 9subne0d 11656 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ≠ 0)
118, 10absrpcld 15497 . . . . . . . 8 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
1211rphalfcld 13111 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ((abs‘(𝐴𝐵)) / 2) ∈ ℝ+)
13 eqidd 2741 . . . . . . 7 (((𝐹𝐴𝐹𝐵𝐴𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
14 simp1 1136 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐴)
152, 3, 12, 13, 14climi 15556 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)))
16 simp2 1137 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐵)
172, 3, 12, 13, 16climi 15556 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))
182rexanuz2 15398 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
1915, 17, 18sylanbrc 582 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
20 nnz 12660 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
21 uzid 12918 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
22 ne0i 4364 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
23 r19.2z 4518 . . . . . . . . . 10 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
2423ex 412 . . . . . . . . 9 ((ℤ𝑗) ≠ ∅ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
2520, 21, 22, 244syl 19 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
26 simpr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
27 simpll 766 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐴 ∈ ℂ)
2826, 27abssubd 15502 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹𝑘))))
2928breq1d 5176 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2)))
30 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐵 ∈ ℂ)
31 subcl 11535 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3231adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3332abscld 15485 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
34 abs3lem 15387 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐴𝐵)) ∈ ℝ)) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3527, 30, 26, 33, 34syl22anc 838 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3633ltnrd 11424 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ¬ (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)))
3736pm2.21d 121 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)) → ¬ 1 ∈ ℤ))
3835, 37syld 47 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
3938expd 415 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4029, 39sylbid 240 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4140impr 454 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ))
4241adantld 490 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
4342expimpd 453 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4443rexlimdvw 3166 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4525, 44sylan9r 508 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4645rexlimdva 3161 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
475, 7, 46syl2anc 583 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4819, 47mpd 15 . . . 4 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ¬ 1 ∈ ℤ)
49483expia 1121 . . 3 ((𝐹𝐴𝐹𝐵) → (𝐴𝐵 → ¬ 1 ∈ ℤ))
5049necon4ad 2965 . 2 ((𝐹𝐴𝐹𝐵) → (1 ∈ ℤ → 𝐴 = 𝐵))
511, 50mpi 20 1 ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  cz 12639  cuz 12903  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534
This theorem is referenced by:  fclim  15599  climeu  15601  summolem2  15764  summo  15765  prodmolem2  15983  prodmo  15984  ef0  16139  efcj  16140  efaddlem  16141  ioombl1lem4  25615  mbflimlem  25721  itg2i1fseq  25810  itg2addlem  25813  plyeq0lem  26269  ulmuni  26453  leibpi  27003  lgamp1  27118  lgam1  27125  sumnnodd  45551  climfveq  45590  climfveqf  45601  climfv  45612  climlimsupcex  45690  climliminflimsupd  45722  stirlinglem15  46009  fouriersw  46152  sge0isum  46348  vonioolem2  46602  vonicclem2  46605
  Copyright terms: Public domain W3C validator