MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climuni Structured version   Visualization version   GIF version

Theorem climuni 14904
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)

Proof of Theorem climuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 12006 . 2 1 ∈ ℤ
2 nnuz 12275 . . . . . . 7 ℕ = (ℤ‘1)
3 1zzd 12007 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 1 ∈ ℤ)
4 climcl 14851 . . . . . . . . . . 11 (𝐹𝐴𝐴 ∈ ℂ)
543ad2ant1 1127 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴 ∈ ℂ)
6 climcl 14851 . . . . . . . . . . 11 (𝐹𝐵𝐵 ∈ ℂ)
763ad2ant2 1128 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐵 ∈ ℂ)
85, 7subcld 10991 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ∈ ℂ)
9 simp3 1132 . . . . . . . . . 10 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐴𝐵)
105, 7, 9subne0d 11000 . . . . . . . . 9 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (𝐴𝐵) ≠ 0)
118, 10absrpcld 14803 . . . . . . . 8 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (abs‘(𝐴𝐵)) ∈ ℝ+)
1211rphalfcld 12438 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ((abs‘(𝐴𝐵)) / 2) ∈ ℝ+)
13 eqidd 2827 . . . . . . 7 (((𝐹𝐴𝐹𝐵𝐴𝐵) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (𝐹𝑘))
14 simp1 1130 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐴)
152, 3, 12, 13, 14climi 14862 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)))
16 simp2 1131 . . . . . . 7 ((𝐹𝐴𝐹𝐵𝐴𝐵) → 𝐹𝐵)
172, 3, 12, 13, 16climi 14862 . . . . . 6 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))
182rexanuz2 14704 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
1915, 17, 18sylanbrc 583 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
20 nnz 11998 . . . . . . . . 9 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
21 uzid 12252 . . . . . . . . 9 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
22 ne0i 4304 . . . . . . . . 9 (𝑗 ∈ (ℤ𝑗) → (ℤ𝑗) ≠ ∅)
23 r19.2z 4443 . . . . . . . . . 10 (((ℤ𝑗) ≠ ∅ ∧ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))))
2423ex 413 . . . . . . . . 9 ((ℤ𝑗) ≠ ∅ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
2520, 21, 22, 244syl 19 . . . . . . . 8 (𝑗 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)))))
26 simpr 485 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
27 simpll 763 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐴 ∈ ℂ)
2826, 27abssubd 14808 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐴 − (𝐹𝑘))))
2928breq1d 5073 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) ↔ (abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2)))
30 simplr 765 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → 𝐵 ∈ ℂ)
31 subcl 10879 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3231adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
3332abscld 14791 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐴𝐵)) ∈ ℝ)
34 abs3lem 14693 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐴𝐵)) ∈ ℝ)) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3527, 30, 26, 33, 34syl22anc 836 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵))))
3633ltnrd 10768 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ¬ (abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)))
3736pm2.21d 121 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴𝐵)) < (abs‘(𝐴𝐵)) → ¬ 1 ∈ ℤ))
3835, 37syld 47 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
3938expd 416 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐴 − (𝐹𝑘))) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4029, 39sylbid 241 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ)))
4140impr 455 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2) → ¬ 1 ∈ ℤ))
4241adantld 491 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2))) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2)) → ¬ 1 ∈ ℤ))
4342expimpd 454 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4443rexlimdvw 3295 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4525, 44sylan9r 509 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4645rexlimdva 3289 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
475, 7, 46syl2anc 584 . . . . 5 ((𝐹𝐴𝐹𝐵𝐴𝐵) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < ((abs‘(𝐴𝐵)) / 2)) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐴𝐵)) / 2))) → ¬ 1 ∈ ℤ))
4819, 47mpd 15 . . . 4 ((𝐹𝐴𝐹𝐵𝐴𝐵) → ¬ 1 ∈ ℤ)
49483expia 1115 . . 3 ((𝐹𝐴𝐹𝐵) → (𝐴𝐵 → ¬ 1 ∈ ℤ))
5049necon4ad 3040 . 2 ((𝐹𝐴𝐹𝐵) → (1 ∈ ℤ → 𝐴 = 𝐵))
511, 50mpi 20 1 ((𝐹𝐴𝐹𝐵) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  c0 4295   class class class wbr 5063  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  1c1 10532   < clt 10669  cmin 10864   / cdiv 11291  cn 11632  2c2 11686  cz 11975  cuz 12237  abscabs 14588  cli 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12385  df-seq 13365  df-exp 13425  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840
This theorem is referenced by:  fclim  14905  climeu  14907  summolem2  15068  summo  15069  prodmolem2  15284  prodmo  15285  ef0  15439  efcj  15440  efaddlem  15441  ioombl1lem4  24096  mbflimlem  24202  itg2i1fseq  24290  itg2addlem  24293  plyeq0lem  24734  ulmuni  24914  leibpi  25453  lgamp1  25567  lgam1  25574  sumnnodd  41795  climfveq  41834  climfveqf  41845  climfv  41856  climlimsupcex  41934  climliminflimsupd  41966  stirlinglem15  42258  fouriersw  42401  sge0isum  42594  vonioolem2  42848  vonicclem2  42851
  Copyright terms: Public domain W3C validator