MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1 Structured version   Visualization version   GIF version

Theorem seq1 13780
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seq1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))

Proof of Theorem seq1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 13770 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
2 id 22 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
31, 2fveq12d 6811 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑀) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)))
4 fveq2 6804 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝐹𝑀) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)))
53, 4eqeq12d 2752 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))))
6 0z 12376 . . . 4 0 ∈ ℤ
76elimel 4534 . . 3 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
8 eqid 2736 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
9 fvex 6817 . . 3 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
10 eqid 2736 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1110seqval 13778 . . 3 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
127, 8, 9, 10, 11uzrdg0i 13725 . 2 (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))
135, 12dedth 4523 1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  Vcvv 3437  ifcif 4465  cop 4571  cmpt 5164  cres 5602  cfv 6458  (class class class)co 7307  cmpo 7309  ωcom 7744  reccrdg 8271  0cc0 10917  1c1 10918   + caddc 10920  cz 12365  seqcseq 13767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-n0 12280  df-z 12366  df-uz 12629  df-seq 13768
This theorem is referenced by:  seq1i  13781  seqexw  13783  seqcl2  13787  seqfveq2  13791  seqfveq  13793  seqshft2  13795  seqsplit  13802  seq1p  13803  seqcaopr3  13804  seqf1olem2a  13807  seqf1olem2  13809  seqf1o  13810  seqid  13814  seqhomo  13816  seqz  13817  exp1  13834  fac1  14037  bcn2  14079  seqcoll  14223  isumrpcl  15600  clim2prod  15645  prodfn0  15651  prodfrec  15652  ruclem6  15989  sadc0  16206  smup0  16231  seq1st  16321  algr0  16322  eulerthlem2  16528  pcmpt  16638  gsumsplit1r  18416  gsumprval  18417  mulgfval  18747  voliunlem1  24759  volsup  24765  abelthlem6  25640  abelthlem9  25644  leibpi  26137  bposlem5  26481  opsqrlem2  30548  esumfzf  32082  sseqp1  32407  rrvsum  32466  cvmliftlem4  33295  iprodefisumlem  33751  faclimlem1  33754  heiborlem4  36016  fmul01  43170  fmuldfeq  43173  fmul01lt1lem1  43174  stoweidlem3  43593  wallispilem4  43658  wallispi2lem1  43661  wallispi2lem2  43662  stirlinglem7  43670  stirlinglem11  43674  sge0isum  44015  ackval0  46084
  Copyright terms: Public domain W3C validator