| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > seq1 | Structured version Visualization version GIF version | ||
| Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| seq1 | ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqeq1 14027 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0)) | |
| 3 | 1, 2 | fveq12d 6893 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑀) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0))) |
| 4 | fveq2 6886 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝐹‘𝑀) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
| 5 | 3, 4 | eqeq12d 2750 | . 2 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
| 6 | 0z 12607 | . . . 4 ⊢ 0 ∈ ℤ | |
| 7 | 6 | elimel 4575 | . . 3 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
| 8 | eqid 2734 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) | |
| 9 | fvex 6899 | . . 3 ⊢ (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V | |
| 10 | eqid 2734 | . . 3 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) | |
| 11 | 10 | seqval 14035 | . . 3 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) |
| 12 | 7, 8, 9, 10, 11 | uzrdg0i 13982 | . 2 ⊢ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) |
| 13 | 5, 12 | dedth 4564 | 1 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ifcif 4505 〈cop 4612 ↦ cmpt 5205 ↾ cres 5667 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 ωcom 7869 reccrdg 8431 0cc0 11137 1c1 11138 + caddc 11140 ℤcz 12596 seqcseq 14024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 |
| This theorem is referenced by: seq1i 14038 seqexw 14040 seqcl2 14043 seqfveq2 14047 seqfveq 14049 seqshft2 14051 seqsplit 14058 seq1p 14059 seqcaopr3 14060 seqf1olem2a 14063 seqf1olem2 14065 seqf1o 14066 seqid 14070 seqhomo 14072 seqz 14073 exp1 14090 fac1 14298 bcn2 14340 seqcoll 14485 isumrpcl 15861 clim2prod 15906 prodfn0 15912 prodfrec 15913 ruclem6 16253 sadc0 16473 smup0 16498 seq1st 16590 algr0 16591 eulerthlem2 16801 pcmpt 16912 gsumsplit1r 18669 gsumprval 18670 mulgfval 19056 voliunlem1 25521 volsup 25527 abelthlem6 26416 abelthlem9 26420 leibpi 26921 bposlem5 27268 opsqrlem2 32088 esumfzf 34029 sseqp1 34356 rrvsum 34415 cvmliftlem4 35252 iprodefisumlem 35699 faclimlem1 35702 heiborlem4 37780 fmul01 45552 fmuldfeq 45555 fmul01lt1lem1 45556 stoweidlem3 45975 wallispilem4 46040 wallispi2lem1 46043 wallispi2lem2 46044 stirlinglem7 46052 stirlinglem11 46056 sge0isum 46399 ackval0 48559 |
| Copyright terms: Public domain | W3C validator |