MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1 Structured version   Visualization version   GIF version

Theorem seq1 14037
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seq1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))

Proof of Theorem seq1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 14027 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
2 id 22 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
31, 2fveq12d 6893 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑀) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)))
4 fveq2 6886 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝐹𝑀) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)))
53, 4eqeq12d 2750 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))))
6 0z 12607 . . . 4 0 ∈ ℤ
76elimel 4575 . . 3 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
8 eqid 2734 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
9 fvex 6899 . . 3 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
10 eqid 2734 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1110seqval 14035 . . 3 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
127, 8, 9, 10, 11uzrdg0i 13982 . 2 (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))
135, 12dedth 4564 1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  ifcif 4505  cop 4612  cmpt 5205  cres 5667  cfv 6541  (class class class)co 7413  cmpo 7415  ωcom 7869  reccrdg 8431  0cc0 11137  1c1 11138   + caddc 11140  cz 12596  seqcseq 14024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-seq 14025
This theorem is referenced by:  seq1i  14038  seqexw  14040  seqcl2  14043  seqfveq2  14047  seqfveq  14049  seqshft2  14051  seqsplit  14058  seq1p  14059  seqcaopr3  14060  seqf1olem2a  14063  seqf1olem2  14065  seqf1o  14066  seqid  14070  seqhomo  14072  seqz  14073  exp1  14090  fac1  14298  bcn2  14340  seqcoll  14485  isumrpcl  15861  clim2prod  15906  prodfn0  15912  prodfrec  15913  ruclem6  16253  sadc0  16473  smup0  16498  seq1st  16590  algr0  16591  eulerthlem2  16801  pcmpt  16912  gsumsplit1r  18669  gsumprval  18670  mulgfval  19056  voliunlem1  25521  volsup  25527  abelthlem6  26416  abelthlem9  26420  leibpi  26921  bposlem5  27268  opsqrlem2  32088  esumfzf  34029  sseqp1  34356  rrvsum  34415  cvmliftlem4  35252  iprodefisumlem  35699  faclimlem1  35702  heiborlem4  37780  fmul01  45552  fmuldfeq  45555  fmul01lt1lem1  45556  stoweidlem3  45975  wallispilem4  46040  wallispi2lem1  46043  wallispi2lem2  46044  stirlinglem7  46052  stirlinglem11  46056  sge0isum  46399  ackval0  48559
  Copyright terms: Public domain W3C validator