MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1 Structured version   Visualization version   GIF version

Theorem seq1 13955
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seq1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))

Proof of Theorem seq1
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 13945 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
2 id 22 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0))
31, 2fveq12d 6847 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑀) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)))
4 fveq2 6840 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝐹𝑀) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)))
53, 4eqeq12d 2745 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))))
6 0z 12516 . . . 4 0 ∈ ℤ
76elimel 4554 . . 3 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
8 eqid 2729 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
9 fvex 6853 . . 3 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
10 eqid 2729 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1110seqval 13953 . . 3 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
127, 8, 9, 10, 11uzrdg0i 13900 . 2 (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))
135, 12dedth 4543 1 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  cop 4591  cmpt 5183  cres 5633  cfv 6499  (class class class)co 7369  cmpo 7371  ωcom 7822  reccrdg 8354  0cc0 11044  1c1 11045   + caddc 11047  cz 12505  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-seq 13943
This theorem is referenced by:  seq1i  13956  seqexw  13958  seqcl2  13961  seqfveq2  13965  seqfveq  13967  seqshft2  13969  seqsplit  13976  seq1p  13977  seqcaopr3  13978  seqf1olem2a  13981  seqf1olem2  13983  seqf1o  13984  seqid  13988  seqhomo  13990  seqz  13991  exp1  14008  fac1  14218  bcn2  14260  seqcoll  14405  isumrpcl  15785  clim2prod  15830  prodfn0  15836  prodfrec  15837  ruclem6  16179  sadc0  16400  smup0  16425  seq1st  16517  algr0  16518  eulerthlem2  16728  pcmpt  16839  gsumsplit1r  18590  gsumprval  18591  mulgfval  18977  voliunlem1  25427  volsup  25433  abelthlem6  26322  abelthlem9  26326  leibpi  26828  bposlem5  27175  opsqrlem2  32043  esumfzf  34032  sseqp1  34359  rrvsum  34418  cvmliftlem4  35248  iprodefisumlem  35700  faclimlem1  35703  heiborlem4  37781  fmul01  45551  fmuldfeq  45554  fmul01lt1lem1  45555  stoweidlem3  45974  wallispilem4  46039  wallispi2lem1  46042  wallispi2lem2  46043  stirlinglem7  46051  stirlinglem11  46055  sge0isum  46398  ackval0  48642
  Copyright terms: Public domain W3C validator