![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seq1 | Structured version Visualization version GIF version |
Description: Value of the sequence builder function at its initial value. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
seq1 | ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeq1 14009 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)) | |
2 | id 22 | . . . 4 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → 𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0)) | |
3 | 1, 2 | fveq12d 6909 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑀) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0))) |
4 | fveq2 6902 | . . 3 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝐹‘𝑀) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
5 | 3, 4 | eqeq12d 2744 | . 2 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
6 | 0z 12607 | . . . 4 ⊢ 0 ∈ ℤ | |
7 | 6 | elimel 4601 | . . 3 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
8 | eqid 2728 | . . 3 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) | |
9 | fvex 6915 | . . 3 ⊢ (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V | |
10 | eqid 2728 | . . 3 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) | |
11 | 10 | seqval 14017 | . . 3 ⊢ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))〉) ↾ ω) |
12 | 7, 8, 9, 10, 11 | uzrdg0i 13964 | . 2 ⊢ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) |
13 | 5, 12 | dedth 4590 | 1 ⊢ (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ifcif 4532 〈cop 4638 ↦ cmpt 5235 ↾ cres 5684 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ωcom 7876 reccrdg 8436 0cc0 11146 1c1 11147 + caddc 11149 ℤcz 12596 seqcseq 14006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-seq 14007 |
This theorem is referenced by: seq1i 14020 seqexw 14022 seqcl2 14025 seqfveq2 14029 seqfveq 14031 seqshft2 14033 seqsplit 14040 seq1p 14041 seqcaopr3 14042 seqf1olem2a 14045 seqf1olem2 14047 seqf1o 14048 seqid 14052 seqhomo 14054 seqz 14055 exp1 14072 fac1 14276 bcn2 14318 seqcoll 14465 isumrpcl 15829 clim2prod 15874 prodfn0 15880 prodfrec 15881 ruclem6 16219 sadc0 16436 smup0 16461 seq1st 16549 algr0 16550 eulerthlem2 16758 pcmpt 16868 gsumsplit1r 18654 gsumprval 18655 mulgfval 19032 voliunlem1 25499 volsup 25505 abelthlem6 26393 abelthlem9 26397 leibpi 26894 bposlem5 27241 opsqrlem2 31971 esumfzf 33721 sseqp1 34048 rrvsum 34107 cvmliftlem4 34931 iprodefisumlem 35367 faclimlem1 35370 heiborlem4 37320 fmul01 44997 fmuldfeq 45000 fmul01lt1lem1 45001 stoweidlem3 45420 wallispilem4 45485 wallispi2lem1 45488 wallispi2lem2 45489 stirlinglem7 45497 stirlinglem11 45501 sge0isum 45844 ackval0 47831 |
Copyright terms: Public domain | W3C validator |