MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzf1oi Structured version   Visualization version   GIF version

Theorem om2uzf1oi 13601
Description: 𝐺 (see om2uz0i 13595) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzf1oi 𝐺:ω–1-1-onto→(ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzf1oi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8236 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6514 . . . . 5 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 230 . . . 4 𝐺 Fn ω
5 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
65, 2om2uzrani 13600 . . . . 5 ran 𝐺 = (ℤ𝐶)
76eqimssi 3975 . . . 4 ran 𝐺 ⊆ (ℤ𝐶)
8 df-f 6422 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
94, 7, 8mpbir2an 707 . . 3 𝐺:ω⟶(ℤ𝐶)
105, 2om2uzuzi 13597 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
11 eluzelz 12521 . . . . . . . . 9 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
1210, 11syl 17 . . . . . . . 8 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
1312zred 12355 . . . . . . 7 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
145, 2om2uzuzi 13597 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
15 eluzelz 12521 . . . . . . . . 9 ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺𝑧) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℤ)
1716zred 12355 . . . . . . 7 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℝ)
18 lttri3 10989 . . . . . . 7 (((𝐺𝑦) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
1913, 17, 18syl2an 595 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
20 ioran 980 . . . . . 6 (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦)))
2119, 20bitr4di 288 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
22 nnord 7695 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7695 . . . . . . . . 9 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6287 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 595 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625con2bid 354 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) ↔ ¬ 𝑦 = 𝑧))
275, 2om2uzlti 13598 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
285, 2om2uzlti 13598 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
2928ancoms 458 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3027, 29orim12d 961 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3126, 30sylbird 259 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3231con1d 145 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) → 𝑦 = 𝑧))
3321, 32sylbid 239 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
3433rgen2 3126 . . 3 𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)
35 dff13 7109 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
369, 34, 35mpbir2an 707 . 2 𝐺:ω–1-1→(ℤ𝐶)
37 dff1o5 6709 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
3836, 6, 37mpbir2an 707 1 𝐺:ω–1-1-onto→(ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  Ord word 6250   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  ωcom 7687  reccrdg 8211  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  om2uzisoi  13602  uzrdglem  13605  uzrdgfni  13606  uzrdgsuci  13608  uzenom  13612  fzennn  13616  cardfz  13618  hashgf1o  13619  axdc4uzlem  13631  unbenlem  16537
  Copyright terms: Public domain W3C validator