| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzf1oi | Structured version Visualization version GIF version | ||
| Description: 𝐺 (see om2uz0i 13854) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzf1oi | ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8354 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
| 2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6578 | . . . . 5 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝐺 Fn ω |
| 5 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
| 6 | 5, 2 | om2uzrani 13859 | . . . . 5 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| 7 | 6 | eqimssi 3995 | . . . 4 ⊢ ran 𝐺 ⊆ (ℤ≥‘𝐶) |
| 8 | df-f 6485 | . . . 4 ⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | |
| 9 | 4, 7, 8 | mpbir2an 711 | . . 3 ⊢ 𝐺:ω⟶(ℤ≥‘𝐶) |
| 10 | 5, 2 | om2uzuzi 13856 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
| 11 | eluzelz 12742 | . . . . . . . . 9 ⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | |
| 12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
| 13 | 12 | zred 12577 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
| 14 | 5, 2 | om2uzuzi 13856 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 15 | eluzelz 12742 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑧) ∈ ℤ) | |
| 16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℤ) |
| 17 | 16 | zred 12577 | . . . . . . 7 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℝ) |
| 18 | lttri3 11196 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) | |
| 19 | 13, 17, 18 | syl2an 596 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 20 | ioran 985 | . . . . . 6 ⊢ (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 22 | nnord 7804 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
| 23 | nnord 7804 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
| 24 | ordtri3 6342 | . . . . . . . . 9 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
| 25 | 22, 23, 24 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 26 | 25 | con2bid 354 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ ¬ 𝑦 = 𝑧)) |
| 27 | 5, 2 | om2uzlti 13857 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
| 28 | 5, 2 | om2uzlti 13857 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
| 29 | 28 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
| 30 | 27, 29 | orim12d 966 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 31 | 26, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 32 | 31 | con1d 145 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) → 𝑦 = 𝑧)) |
| 33 | 21, 32 | sylbid 240 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 34 | 33 | rgen2 3172 | . . 3 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧) |
| 35 | dff13 7188 | . . 3 ⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
| 36 | 9, 34, 35 | mpbir2an 711 | . 2 ⊢ 𝐺:ω–1-1→(ℤ≥‘𝐶) |
| 37 | dff1o5 6772 | . 2 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | |
| 38 | 36, 6, 37 | mpbir2an 711 | 1 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 ran crn 5617 ↾ cres 5618 Ord word 6305 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ωcom 7796 reccrdg 8328 ℝcr 11005 1c1 11007 + caddc 11009 < clt 11146 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: om2uzisoi 13861 uzrdglem 13864 uzrdgfni 13865 uzrdgsuci 13867 uzenom 13871 fzennn 13875 cardfz 13877 hashgf1o 13878 axdc4uzlem 13890 unbenlem 16820 |
| Copyright terms: Public domain | W3C validator |