![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2uzf1oi | Structured version Visualization version GIF version |
Description: 𝐺 (see om2uz0i 13918) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzf1oi | ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8436 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 2 | fneq1i 6640 | . . . . 5 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝐺 Fn ω |
5 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
6 | 5, 2 | om2uzrani 13923 | . . . . 5 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
7 | 6 | eqimssi 4037 | . . . 4 ⊢ ran 𝐺 ⊆ (ℤ≥‘𝐶) |
8 | df-f 6541 | . . . 4 ⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | |
9 | 4, 7, 8 | mpbir2an 708 | . . 3 ⊢ 𝐺:ω⟶(ℤ≥‘𝐶) |
10 | 5, 2 | om2uzuzi 13920 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
11 | eluzelz 12836 | . . . . . . . . 9 ⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
13 | 12 | zred 12670 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
14 | 5, 2 | om2uzuzi 13920 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
15 | eluzelz 12836 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑧) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℤ) |
17 | 16 | zred 12670 | . . . . . . 7 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℝ) |
18 | lttri3 11301 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) | |
19 | 13, 17, 18 | syl2an 595 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
20 | ioran 980 | . . . . . 6 ⊢ (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦))) | |
21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
22 | nnord 7860 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
23 | nnord 7860 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
24 | ordtri3 6394 | . . . . . . . . 9 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
25 | 22, 23, 24 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | con2bid 354 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ ¬ 𝑦 = 𝑧)) |
27 | 5, 2 | om2uzlti 13921 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
28 | 5, 2 | om2uzlti 13921 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
29 | 28 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
30 | 27, 29 | orim12d 961 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
31 | 26, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
32 | 31 | con1d 145 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) → 𝑦 = 𝑧)) |
33 | 21, 32 | sylbid 239 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
34 | 33 | rgen2 3191 | . . 3 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧) |
35 | dff13 7250 | . . 3 ⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
36 | 9, 34, 35 | mpbir2an 708 | . 2 ⊢ 𝐺:ω–1-1→(ℤ≥‘𝐶) |
37 | dff1o5 6836 | . 2 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | |
38 | 36, 6, 37 | mpbir2an 708 | 1 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ∀wral 3055 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 ↦ cmpt 5224 ran crn 5670 ↾ cres 5671 Ord word 6357 Fn wfn 6532 ⟶wf 6533 –1-1→wf1 6534 –1-1-onto→wf1o 6536 ‘cfv 6537 (class class class)co 7405 ωcom 7852 reccrdg 8410 ℝcr 11111 1c1 11113 + caddc 11115 < clt 11252 ℤcz 12562 ℤ≥cuz 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 |
This theorem is referenced by: om2uzisoi 13925 uzrdglem 13928 uzrdgfni 13929 uzrdgsuci 13931 uzenom 13935 fzennn 13939 cardfz 13941 hashgf1o 13942 axdc4uzlem 13954 unbenlem 16850 |
Copyright terms: Public domain | W3C validator |