MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzf1oi Structured version   Visualization version   GIF version

Theorem om2uzf1oi 13316
Description: 𝐺 (see om2uz0i 13310) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzf1oi 𝐺:ω–1-1-onto→(ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzf1oi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8053 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6420 . . . . 5 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 234 . . . 4 𝐺 Fn ω
5 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
65, 2om2uzrani 13315 . . . . 5 ran 𝐺 = (ℤ𝐶)
76eqimssi 3973 . . . 4 ran 𝐺 ⊆ (ℤ𝐶)
8 df-f 6328 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
94, 7, 8mpbir2an 710 . . 3 𝐺:ω⟶(ℤ𝐶)
105, 2om2uzuzi 13312 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
11 eluzelz 12241 . . . . . . . . 9 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
1210, 11syl 17 . . . . . . . 8 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
1312zred 12075 . . . . . . 7 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
145, 2om2uzuzi 13312 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
15 eluzelz 12241 . . . . . . . . 9 ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺𝑧) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℤ)
1716zred 12075 . . . . . . 7 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℝ)
18 lttri3 10713 . . . . . . 7 (((𝐺𝑦) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
1913, 17, 18syl2an 598 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
20 ioran 981 . . . . . 6 (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦)))
2119, 20syl6bbr 292 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
22 nnord 7568 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7568 . . . . . . . . 9 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6195 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 598 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625con2bid 358 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) ↔ ¬ 𝑦 = 𝑧))
275, 2om2uzlti 13313 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
285, 2om2uzlti 13313 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
2928ancoms 462 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3027, 29orim12d 962 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3126, 30sylbird 263 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3231con1d 147 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) → 𝑦 = 𝑧))
3321, 32sylbid 243 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
3433rgen2 3168 . . 3 𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)
35 dff13 6991 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
369, 34, 35mpbir2an 710 . 2 𝐺:ω–1-1→(ℤ𝐶)
37 dff1o5 6599 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
3836, 6, 37mpbir2an 710 1 𝐺:ω–1-1-onto→(ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  Ord word 6158   Fn wfn 6319  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  ωcom 7560  reccrdg 8028  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cz 11969  cuz 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232
This theorem is referenced by:  om2uzisoi  13317  uzrdglem  13320  uzrdgfni  13321  uzrdgsuci  13323  uzenom  13327  fzennn  13331  cardfz  13333  hashgf1o  13334  axdc4uzlem  13346  unbenlem  16234
  Copyright terms: Public domain W3C validator