MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzf1oi Structured version   Visualization version   GIF version

Theorem om2uzf1oi 13673
Description: 𝐺 (see om2uz0i 13667) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzf1oi 𝐺:ω–1-1-onto→(ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzf1oi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8266 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6530 . . . . 5 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 230 . . . 4 𝐺 Fn ω
5 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
65, 2om2uzrani 13672 . . . . 5 ran 𝐺 = (ℤ𝐶)
76eqimssi 3979 . . . 4 ran 𝐺 ⊆ (ℤ𝐶)
8 df-f 6437 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
94, 7, 8mpbir2an 708 . . 3 𝐺:ω⟶(ℤ𝐶)
105, 2om2uzuzi 13669 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
11 eluzelz 12592 . . . . . . . . 9 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
1210, 11syl 17 . . . . . . . 8 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
1312zred 12426 . . . . . . 7 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
145, 2om2uzuzi 13669 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
15 eluzelz 12592 . . . . . . . . 9 ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺𝑧) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℤ)
1716zred 12426 . . . . . . 7 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℝ)
18 lttri3 11058 . . . . . . 7 (((𝐺𝑦) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
1913, 17, 18syl2an 596 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
20 ioran 981 . . . . . 6 (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦)))
2119, 20bitr4di 289 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
22 nnord 7720 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7720 . . . . . . . . 9 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6302 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 596 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625con2bid 355 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) ↔ ¬ 𝑦 = 𝑧))
275, 2om2uzlti 13670 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
285, 2om2uzlti 13670 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
2928ancoms 459 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3027, 29orim12d 962 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3126, 30sylbird 259 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3231con1d 145 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) → 𝑦 = 𝑧))
3321, 32sylbid 239 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
3433rgen2 3120 . . 3 𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)
35 dff13 7128 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
369, 34, 35mpbir2an 708 . 2 𝐺:ω–1-1→(ℤ𝐶)
37 dff1o5 6725 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
3836, 6, 37mpbir2an 708 1 𝐺:ω–1-1-onto→(ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591  Ord word 6265   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  reccrdg 8240  cr 10870  1c1 10872   + caddc 10874   < clt 11009  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  om2uzisoi  13674  uzrdglem  13677  uzrdgfni  13678  uzrdgsuci  13680  uzenom  13684  fzennn  13688  cardfz  13690  hashgf1o  13691  axdc4uzlem  13703  unbenlem  16609
  Copyright terms: Public domain W3C validator