MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzf1oi Structured version   Visualization version   GIF version

Theorem om2uzf1oi 12960
Description: 𝐺 (see om2uz0i 12954) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzf1oi 𝐺:ω–1-1-onto→(ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzf1oi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 7734 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6163 . . . . 5 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 222 . . . 4 𝐺 Fn ω
5 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
65, 2om2uzrani 12959 . . . . 5 ran 𝐺 = (ℤ𝐶)
76eqimssi 3819 . . . 4 ran 𝐺 ⊆ (ℤ𝐶)
8 df-f 6072 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
94, 7, 8mpbir2an 702 . . 3 𝐺:ω⟶(ℤ𝐶)
105, 2om2uzuzi 12956 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
11 eluzelz 11896 . . . . . . . . 9 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
1210, 11syl 17 . . . . . . . 8 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
1312zred 11729 . . . . . . 7 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
145, 2om2uzuzi 12956 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
15 eluzelz 11896 . . . . . . . . 9 ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺𝑧) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℤ)
1716zred 11729 . . . . . . 7 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℝ)
18 lttri3 10375 . . . . . . 7 (((𝐺𝑦) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
1913, 17, 18syl2an 589 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
20 ioran 1006 . . . . . 6 (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦)))
2119, 20syl6bbr 280 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
22 nnord 7271 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7271 . . . . . . . . 9 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 5944 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 589 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625con2bid 345 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) ↔ ¬ 𝑦 = 𝑧))
275, 2om2uzlti 12957 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
285, 2om2uzlti 12957 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
2928ancoms 450 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3027, 29orim12d 987 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3126, 30sylbird 251 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3231con1d 141 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) → 𝑦 = 𝑧))
3321, 32sylbid 231 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
3433rgen2a 3124 . . 3 𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)
35 dff13 6704 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
369, 34, 35mpbir2an 702 . 2 𝐺:ω–1-1→(ℤ𝐶)
37 dff1o5 6329 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
3836, 6, 37mpbir2an 702 1 𝐺:ω–1-1-onto→(ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wral 3055  Vcvv 3350  wss 3732   class class class wbr 4809  cmpt 4888  ran crn 5278  cres 5279  Ord word 5907   Fn wfn 6063  wf 6064  1-1wf1 6065  1-1-ontowf1o 6067  cfv 6068  (class class class)co 6842  ωcom 7263  reccrdg 7709  cr 10188  1c1 10190   + caddc 10192   < clt 10328  cz 11624  cuz 11886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887
This theorem is referenced by:  om2uzisoi  12961  uzrdglem  12964  uzrdgfni  12965  uzrdgsuci  12967  uzenom  12971  fzennn  12975  cardfz  12977  hashgf1o  12978  axdc4uzlem  12990  unbenlem  15891
  Copyright terms: Public domain W3C validator