MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzf1oi Structured version   Visualization version   GIF version

Theorem om2uzf1oi 13867
Description: 𝐺 (see om2uz0i 13861) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
Assertion
Ref Expression
om2uzf1oi 𝐺:ω–1-1-onto→(ℤ𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem om2uzf1oi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8385 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
32fneq1i 6603 . . . . 5 (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω)
41, 3mpbir 230 . . . 4 𝐺 Fn ω
5 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
65, 2om2uzrani 13866 . . . . 5 ran 𝐺 = (ℤ𝐶)
76eqimssi 4006 . . . 4 ran 𝐺 ⊆ (ℤ𝐶)
8 df-f 6504 . . . 4 (𝐺:ω⟶(ℤ𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ𝐶)))
94, 7, 8mpbir2an 710 . . 3 𝐺:ω⟶(ℤ𝐶)
105, 2om2uzuzi 13863 . . . . . . . . 9 (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶))
11 eluzelz 12781 . . . . . . . . 9 ((𝐺𝑦) ∈ (ℤ𝐶) → (𝐺𝑦) ∈ ℤ)
1210, 11syl 17 . . . . . . . 8 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℤ)
1312zred 12615 . . . . . . 7 (𝑦 ∈ ω → (𝐺𝑦) ∈ ℝ)
145, 2om2uzuzi 13863 . . . . . . . . 9 (𝑧 ∈ ω → (𝐺𝑧) ∈ (ℤ𝐶))
15 eluzelz 12781 . . . . . . . . 9 ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺𝑧) ∈ ℤ)
1614, 15syl 17 . . . . . . . 8 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℤ)
1716zred 12615 . . . . . . 7 (𝑧 ∈ ω → (𝐺𝑧) ∈ ℝ)
18 lttri3 11246 . . . . . . 7 (((𝐺𝑦) ∈ ℝ ∧ (𝐺𝑧) ∈ ℝ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
1913, 17, 18syl2an 597 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦))))
20 ioran 983 . . . . . 6 (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) ↔ (¬ (𝐺𝑦) < (𝐺𝑧) ∧ ¬ (𝐺𝑧) < (𝐺𝑦)))
2119, 20bitr4di 289 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
22 nnord 7814 . . . . . . . . 9 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7814 . . . . . . . . 9 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6357 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 597 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625con2bid 355 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) ↔ ¬ 𝑦 = 𝑧))
275, 2om2uzlti 13864 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦𝑧 → (𝐺𝑦) < (𝐺𝑧)))
285, 2om2uzlti 13864 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
2928ancoms 460 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧𝑦 → (𝐺𝑧) < (𝐺𝑦)))
3027, 29orim12d 964 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3126, 30sylbird 260 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦))))
3231con1d 145 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺𝑦) < (𝐺𝑧) ∨ (𝐺𝑧) < (𝐺𝑦)) → 𝑦 = 𝑧))
3321, 32sylbid 239 . . . 4 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
3433rgen2 3191 . . 3 𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)
35 dff13 7206 . . 3 (𝐺:ω–1-1→(ℤ𝐶) ↔ (𝐺:ω⟶(ℤ𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
369, 34, 35mpbir2an 710 . 2 𝐺:ω–1-1→(ℤ𝐶)
37 dff1o5 6797 . 2 (𝐺:ω–1-1-onto→(ℤ𝐶) ↔ (𝐺:ω–1-1→(ℤ𝐶) ∧ ran 𝐺 = (ℤ𝐶)))
3836, 6, 37mpbir2an 710 1 𝐺:ω–1-1-onto→(ℤ𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3061  Vcvv 3447  wss 3914   class class class wbr 5109  cmpt 5192  ran crn 5638  cres 5639  Ord word 6320   Fn wfn 6495  wf 6496  1-1wf1 6497  1-1-ontowf1o 6499  cfv 6500  (class class class)co 7361  ωcom 7806  reccrdg 8359  cr 11058  1c1 11060   + caddc 11062   < clt 11197  cz 12507  cuz 12771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772
This theorem is referenced by:  om2uzisoi  13868  uzrdglem  13871  uzrdgfni  13872  uzrdgsuci  13874  uzenom  13878  fzennn  13882  cardfz  13884  hashgf1o  13885  axdc4uzlem  13897  unbenlem  16788
  Copyright terms: Public domain W3C validator