Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om2uzf1oi | Structured version Visualization version GIF version |
Description: 𝐺 (see om2uz0i 13595) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzf1oi | ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8236 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 2 | fneq1i 6514 | . . . . 5 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝐺 Fn ω |
5 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
6 | 5, 2 | om2uzrani 13600 | . . . . 5 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
7 | 6 | eqimssi 3975 | . . . 4 ⊢ ran 𝐺 ⊆ (ℤ≥‘𝐶) |
8 | df-f 6422 | . . . 4 ⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | |
9 | 4, 7, 8 | mpbir2an 707 | . . 3 ⊢ 𝐺:ω⟶(ℤ≥‘𝐶) |
10 | 5, 2 | om2uzuzi 13597 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
11 | eluzelz 12521 | . . . . . . . . 9 ⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
13 | 12 | zred 12355 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
14 | 5, 2 | om2uzuzi 13597 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
15 | eluzelz 12521 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑧) ∈ ℤ) | |
16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℤ) |
17 | 16 | zred 12355 | . . . . . . 7 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℝ) |
18 | lttri3 10989 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) | |
19 | 13, 17, 18 | syl2an 595 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
20 | ioran 980 | . . . . . 6 ⊢ (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦))) | |
21 | 19, 20 | bitr4di 288 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
22 | nnord 7695 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
23 | nnord 7695 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
24 | ordtri3 6287 | . . . . . . . . 9 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
25 | 22, 23, 24 | syl2an 595 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | con2bid 354 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ ¬ 𝑦 = 𝑧)) |
27 | 5, 2 | om2uzlti 13598 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
28 | 5, 2 | om2uzlti 13598 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
29 | 28 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
30 | 27, 29 | orim12d 961 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
31 | 26, 30 | sylbird 259 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
32 | 31 | con1d 145 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) → 𝑦 = 𝑧)) |
33 | 21, 32 | sylbid 239 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
34 | 33 | rgen2 3126 | . . 3 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧) |
35 | dff13 7109 | . . 3 ⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
36 | 9, 34, 35 | mpbir2an 707 | . 2 ⊢ 𝐺:ω–1-1→(ℤ≥‘𝐶) |
37 | dff1o5 6709 | . 2 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | |
38 | 36, 6, 37 | mpbir2an 707 | 1 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 Ord word 6250 Fn wfn 6413 ⟶wf 6414 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ωcom 7687 reccrdg 8211 ℝcr 10801 1c1 10803 + caddc 10805 < clt 10940 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: om2uzisoi 13602 uzrdglem 13605 uzrdgfni 13606 uzrdgsuci 13608 uzenom 13612 fzennn 13616 cardfz 13618 hashgf1o 13619 axdc4uzlem 13631 unbenlem 16537 |
Copyright terms: Public domain | W3C validator |