| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzf1oi | Structured version Visualization version GIF version | ||
| Description: 𝐺 (see om2uz0i 13970) is a one-to-one onto mapping. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzf1oi | ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8454 | . . . . 5 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω | |
| 2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6640 | . . . . 5 ⊢ (𝐺 Fn ω ↔ (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝐺 Fn ω |
| 5 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
| 6 | 5, 2 | om2uzrani 13975 | . . . . 5 ⊢ ran 𝐺 = (ℤ≥‘𝐶) |
| 7 | 6 | eqimssi 4024 | . . . 4 ⊢ ran 𝐺 ⊆ (ℤ≥‘𝐶) |
| 8 | df-f 6540 | . . . 4 ⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) | |
| 9 | 4, 7, 8 | mpbir2an 711 | . . 3 ⊢ 𝐺:ω⟶(ℤ≥‘𝐶) |
| 10 | 5, 2 | om2uzuzi 13972 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) |
| 11 | eluzelz 12867 | . . . . . . . . 9 ⊢ ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑦) ∈ ℤ) | |
| 12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℤ) |
| 13 | 12 | zred 12702 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝐺‘𝑦) ∈ ℝ) |
| 14 | 5, 2 | om2uzuzi 13972 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ (ℤ≥‘𝐶)) |
| 15 | eluzelz 12867 | . . . . . . . . 9 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘𝑧) ∈ ℤ) | |
| 16 | 14, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℤ) |
| 17 | 16 | zred 12702 | . . . . . . 7 ⊢ (𝑧 ∈ ω → (𝐺‘𝑧) ∈ ℝ) |
| 18 | lttri3 11323 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ ℝ ∧ (𝐺‘𝑧) ∈ ℝ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) | |
| 19 | 13, 17, 18 | syl2an 596 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 20 | ioran 985 | . . . . . 6 ⊢ (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) < (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) < (𝐺‘𝑦))) | |
| 21 | 19, 20 | bitr4di 289 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 22 | nnord 7874 | . . . . . . . . 9 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
| 23 | nnord 7874 | . . . . . . . . 9 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
| 24 | ordtri3 6393 | . . . . . . . . 9 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
| 25 | 22, 23, 24 | syl2an 596 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 26 | 25 | con2bid 354 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) ↔ ¬ 𝑦 = 𝑧)) |
| 27 | 5, 2 | om2uzlti 13973 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
| 28 | 5, 2 | om2uzlti 13973 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝑦 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
| 29 | 28 | ancoms 458 | . . . . . . . 8 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
| 30 | 27, 29 | orim12d 966 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 31 | 26, 30 | sylbird 260 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ 𝑦 = 𝑧 → ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)))) |
| 32 | 31 | con1d 145 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ ((𝐺‘𝑦) < (𝐺‘𝑧) ∨ (𝐺‘𝑧) < (𝐺‘𝑦)) → 𝑦 = 𝑧)) |
| 33 | 21, 32 | sylbid 240 | . . . 4 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 34 | 33 | rgen2 3185 | . . 3 ⊢ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧) |
| 35 | dff13 7252 | . . 3 ⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
| 36 | 9, 34, 35 | mpbir2an 711 | . 2 ⊢ 𝐺:ω–1-1→(ℤ≥‘𝐶) |
| 37 | dff1o5 6832 | . 2 ⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) | |
| 38 | 36, 6, 37 | mpbir2an 711 | 1 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ↾ cres 5661 Ord word 6356 Fn wfn 6531 ⟶wf 6532 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ωcom 7866 reccrdg 8428 ℝcr 11133 1c1 11135 + caddc 11137 < clt 11274 ℤcz 12593 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 |
| This theorem is referenced by: om2uzisoi 13977 uzrdglem 13980 uzrdgfni 13981 uzrdgsuci 13983 uzenom 13987 fzennn 13991 cardfz 13993 hashgf1o 13994 axdc4uzlem 14006 unbenlem 16933 |
| Copyright terms: Public domain | W3C validator |