MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Visualization version   GIF version

Theorem difidALT 4332
Description: Alternate proof of difid 4331. Shorter, but requiring ax-8 2109, df-clel 2811. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
StepHypRef Expression
1 ssid 3967 . 2 𝐴𝐴
2 ssdif0 4324 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
31, 2mpbi 229 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cdif 3908  wss 3911  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator