MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Visualization version   GIF version

Theorem difidALT 4386
Description: Alternate proof of difid 4385. Shorter, but requiring ax-8 2110, df-clel 2816. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
StepHypRef Expression
1 ssid 4021 . 2 𝐴𝐴
2 ssdif0 4375 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
31, 2mpbi 230 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3963  wss 3966  c0 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-dif 3969  df-ss 3983  df-nul 4343
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator