MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Visualization version   GIF version

Theorem difidALT 4286
Description: Alternate proof of difid 4285. Shorter, but requiring ax-8 2112, df-clel 2816. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
StepHypRef Expression
1 ssid 3923 . 2 𝐴𝐴
2 ssdif0 4278 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
31, 2mpbi 233 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cdif 3863  wss 3866  c0 4237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-dif 3869  df-in 3873  df-ss 3883  df-nul 4238
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator