MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Visualization version   GIF version

Theorem difidALT 4357
Description: Alternate proof of difid 4356. Shorter, but requiring ax-8 2109, df-clel 2808. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
StepHypRef Expression
1 ssid 3986 . 2 𝐴𝐴
2 ssdif0 4346 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
31, 2mpbi 230 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3928  wss 3931  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-dif 3934  df-ss 3948  df-nul 4314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator