MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difidALT Structured version   Visualization version   GIF version

Theorem difidALT 4305
Description: Alternate proof of difid 4304. Shorter, but requiring ax-8 2108, df-clel 2816. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
StepHypRef Expression
1 ssid 3943 . 2 𝐴𝐴
2 ssdif0 4297 . 2 (𝐴𝐴 ↔ (𝐴𝐴) = ∅)
31, 2mpbi 229 1 (𝐴𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  wss 3887  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator