| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difidALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of difid 4325. Shorter, but requiring ax-8 2115, df-clel 2808. (Contributed by NM, 22-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| difidALT | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssdif0 4315 | . 2 ⊢ (𝐴 ⊆ 𝐴 ↔ (𝐴 ∖ 𝐴) = ∅) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ⊆ wss 3898 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |