| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3921 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4309 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 |
| This theorem is referenced by: difn0 4326 pssdifn0 4327 difidALT 4336 vdif0 4428 difrab0eq 4429 difin0 4433 symdifv 5045 frpoind 6303 ordintdif 6371 dffv2 6938 fndifnfp 7132 tfi 7809 peano5 7849 frrlem13 8254 frrlem14 8255 tz7.49 8390 oe0m1 8462 sdomdif 9066 sucdom2 9144 php3 9150 isinf 9183 isinfOLD 9184 unxpwdom2 9517 frind 9679 fin23lem26 10254 fin23lem21 10268 fin1a2lem13 10341 zornn0g 10434 fpwwe2lem12 10571 fpwwe2 10572 isumltss 15790 rpnnen2lem12 16169 symgsssg 19373 symgfisg 19374 psgnunilem5 19400 lspsnat 21031 lsppratlem6 21038 lspprat 21039 lbsextlem4 21047 cnsubrg 21320 opsrtoslem2 21939 psdmullem 22028 0ntr 22934 cmpfi 23271 dfconn2 23282 filconn 23746 cfinfil 23756 ufileu 23782 alexsublem 23907 ptcmplem2 23916 ptcmplem3 23917 restmetu 24434 reconnlem1 24691 bcthlem5 25204 itg10 25565 limcnlp 25755 noextendseq 27555 sltlpss 27795 upgrex 28995 uvtx01vtx 29300 ex-dif 30325 strlem1 32152 difininv 32419 eqdif 32421 difioo 32678 pmtrcnelor 33021 baselcarsg 34270 difelcarsg 34274 sibfof 34304 sitg0 34310 chtvalz 34593 onvf1odlem2 35064 onsucconni 36398 topdifinfeq 37311 nlpineqsn 37369 fdc 37712 setindtr 42986 oe0rif 43247 cantnfresb 43286 relnonrel 43549 inaex 44259 caragenunidm 46479 |
| Copyright terms: Public domain | W3C validator |