| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3936 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3943 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4325 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: difn0 4342 pssdifn0 4343 difidALT 4352 vdif0 4444 difrab0eq 4445 difin0 4449 symdifv 5062 frpoind 6331 wfiOLD 6340 ordintdif 6403 dffv2 6974 fndifnfp 7168 tfi 7848 peano5 7889 frrlem13 8297 frrlem14 8298 wfrlem8OLD 8330 wfrlem16OLD 8338 tz7.49 8459 oe0m1 8533 sucdom2OLD 9096 sdomdif 9139 sucdom2 9217 php3 9223 php3OLD 9233 isinf 9268 isinfOLD 9269 unxpwdom2 9602 frind 9764 fin23lem26 10339 fin23lem21 10353 fin1a2lem13 10426 zornn0g 10519 fpwwe2lem12 10656 fpwwe2 10657 isumltss 15864 rpnnen2lem12 16243 symgsssg 19448 symgfisg 19449 psgnunilem5 19475 lspsnat 21106 lsppratlem6 21113 lspprat 21114 lbsextlem4 21122 cnsubrg 21395 opsrtoslem2 22014 psdmullem 22103 0ntr 23009 cmpfi 23346 dfconn2 23357 filconn 23821 cfinfil 23831 ufileu 23857 alexsublem 23982 ptcmplem2 23991 ptcmplem3 23992 restmetu 24509 reconnlem1 24766 bcthlem5 25280 itg10 25641 limcnlp 25831 noextendseq 27631 sltlpss 27871 upgrex 29071 uvtx01vtx 29376 ex-dif 30404 strlem1 32231 difininv 32498 eqdif 32500 difioo 32759 pmtrcnelor 33102 baselcarsg 34338 difelcarsg 34342 sibfof 34372 sitg0 34378 chtvalz 34661 onsucconni 36455 topdifinfeq 37368 nlpineqsn 37426 fdc 37769 setindtr 43048 oe0rif 43309 cantnfresb 43348 relnonrel 43611 inaex 44321 caragenunidm 46537 |
| Copyright terms: Public domain | W3C validator |