| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3927 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3934 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4316 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: difn0 4333 pssdifn0 4334 difidALT 4343 vdif0 4435 difrab0eq 4436 difin0 4440 symdifv 5053 frpoind 6318 ordintdif 6386 dffv2 6959 fndifnfp 7153 tfi 7832 peano5 7872 frrlem13 8280 frrlem14 8281 tz7.49 8416 oe0m1 8488 sucdom2OLD 9056 sdomdif 9095 sucdom2 9173 php3 9179 isinf 9214 isinfOLD 9215 unxpwdom2 9548 frind 9710 fin23lem26 10285 fin23lem21 10299 fin1a2lem13 10372 zornn0g 10465 fpwwe2lem12 10602 fpwwe2 10603 isumltss 15821 rpnnen2lem12 16200 symgsssg 19404 symgfisg 19405 psgnunilem5 19431 lspsnat 21062 lsppratlem6 21069 lspprat 21070 lbsextlem4 21078 cnsubrg 21351 opsrtoslem2 21970 psdmullem 22059 0ntr 22965 cmpfi 23302 dfconn2 23313 filconn 23777 cfinfil 23787 ufileu 23813 alexsublem 23938 ptcmplem2 23947 ptcmplem3 23948 restmetu 24465 reconnlem1 24722 bcthlem5 25235 itg10 25596 limcnlp 25786 noextendseq 27586 sltlpss 27826 upgrex 29026 uvtx01vtx 29331 ex-dif 30359 strlem1 32186 difininv 32453 eqdif 32455 difioo 32712 pmtrcnelor 33055 baselcarsg 34304 difelcarsg 34308 sibfof 34338 sitg0 34344 chtvalz 34627 onvf1odlem2 35098 onsucconni 36432 topdifinfeq 37345 nlpineqsn 37403 fdc 37746 setindtr 43020 oe0rif 43281 cantnfresb 43320 relnonrel 43583 inaex 44293 caragenunidm 46513 |
| Copyright terms: Public domain | W3C validator |