| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3924 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3931 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4313 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 |
| This theorem is referenced by: difn0 4330 pssdifn0 4331 difidALT 4340 vdif0 4432 difrab0eq 4433 difin0 4437 symdifv 5050 frpoind 6315 ordintdif 6383 dffv2 6956 fndifnfp 7150 tfi 7829 peano5 7869 frrlem13 8277 frrlem14 8278 tz7.49 8413 oe0m1 8485 sdomdif 9089 sucdom2 9167 php3 9173 isinf 9207 isinfOLD 9208 unxpwdom2 9541 frind 9703 fin23lem26 10278 fin23lem21 10292 fin1a2lem13 10365 zornn0g 10458 fpwwe2lem12 10595 fpwwe2 10596 isumltss 15814 rpnnen2lem12 16193 symgsssg 19397 symgfisg 19398 psgnunilem5 19424 lspsnat 21055 lsppratlem6 21062 lspprat 21063 lbsextlem4 21071 cnsubrg 21344 opsrtoslem2 21963 psdmullem 22052 0ntr 22958 cmpfi 23295 dfconn2 23306 filconn 23770 cfinfil 23780 ufileu 23806 alexsublem 23931 ptcmplem2 23940 ptcmplem3 23941 restmetu 24458 reconnlem1 24715 bcthlem5 25228 itg10 25589 limcnlp 25779 noextendseq 27579 sltlpss 27819 upgrex 29019 uvtx01vtx 29324 ex-dif 30352 strlem1 32179 difininv 32446 eqdif 32448 difioo 32705 pmtrcnelor 33048 baselcarsg 34297 difelcarsg 34301 sibfof 34331 sitg0 34337 chtvalz 34620 onvf1odlem2 35091 onsucconni 36425 topdifinfeq 37338 nlpineqsn 37396 fdc 37739 setindtr 43013 oe0rif 43274 cantnfresb 43313 relnonrel 43576 inaex 44286 caragenunidm 46506 |
| Copyright terms: Public domain | W3C validator |