| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3913 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3920 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4301 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 df-nul 4285 |
| This theorem is referenced by: difn0 4318 pssdifn0 4319 difidALT 4328 vdif0 4420 difrab0eq 4421 difin0 4425 symdifv 5035 frpoind 6290 ordintdif 6358 dffv2 6918 fndifnfp 7112 tfi 7786 peano5 7826 frrlem13 8231 frrlem14 8232 tz7.49 8367 oe0m1 8439 sdomdif 9042 sucdom2 9117 php3 9123 isinf 9154 unxpwdom2 9480 frind 9646 fin23lem26 10219 fin23lem21 10233 fin1a2lem13 10306 zornn0g 10399 fpwwe2lem12 10536 fpwwe2 10537 isumltss 15755 rpnnen2lem12 16134 symgsssg 19346 symgfisg 19347 psgnunilem5 19373 lspsnat 21052 lsppratlem6 21059 lspprat 21060 lbsextlem4 21068 cnsubrg 21334 opsrtoslem2 21961 psdmullem 22050 0ntr 22956 cmpfi 23293 dfconn2 23304 filconn 23768 cfinfil 23778 ufileu 23804 alexsublem 23929 ptcmplem2 23938 ptcmplem3 23939 restmetu 24456 reconnlem1 24713 bcthlem5 25226 itg10 25587 limcnlp 25777 noextendseq 27577 sltlpss 27822 upgrex 29037 uvtx01vtx 29342 ex-dif 30367 strlem1 32194 difininv 32461 eqdif 32463 difioo 32725 pmtrcnelor 33033 baselcarsg 34274 difelcarsg 34278 sibfof 34308 sitg0 34314 chtvalz 34597 onvf1odlem2 35077 onsucconni 36411 topdifinfeq 37324 nlpineqsn 37382 fdc 37725 setindtr 42997 oe0rif 43258 cantnfresb 43297 relnonrel 43560 inaex 44270 caragenunidm 46489 |
| Copyright terms: Public domain | W3C validator |