| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3907 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1820 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3914 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4297 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 |
| This theorem is referenced by: difn0 4314 pssdifn0 4315 difidALT 4324 vdif0 4416 difrab0eq 4417 difin0 4421 symdifv 5032 frpoind 6289 ordintdif 6357 dffv2 6917 fndifnfp 7110 tfi 7783 peano5 7823 frrlem13 8228 frrlem14 8229 tz7.49 8364 oe0m1 8436 sdomdif 9038 sucdom2 9112 php3 9118 isinf 9149 unxpwdom2 9474 frind 9643 fin23lem26 10216 fin23lem21 10230 fin1a2lem13 10303 zornn0g 10396 fpwwe2lem12 10533 fpwwe2 10534 isumltss 15755 rpnnen2lem12 16134 chnccat 18532 symgsssg 19379 symgfisg 19380 psgnunilem5 19406 lspsnat 21082 lsppratlem6 21089 lspprat 21090 lbsextlem4 21098 cnsubrg 21364 opsrtoslem2 21991 psdmullem 22080 0ntr 22986 cmpfi 23323 dfconn2 23334 filconn 23798 cfinfil 23808 ufileu 23834 alexsublem 23959 ptcmplem2 23968 ptcmplem3 23969 restmetu 24485 reconnlem1 24742 bcthlem5 25255 itg10 25616 limcnlp 25806 noextendseq 27606 sltlpss 27853 upgrex 29070 uvtx01vtx 29375 ex-dif 30403 strlem1 32230 difininv 32497 eqdif 32499 difioo 32765 pmtrcnelor 33060 baselcarsg 34319 difelcarsg 34323 sibfof 34353 sitg0 34359 chtvalz 34642 onvf1odlem2 35148 onsucconni 36479 topdifinfeq 37392 nlpineqsn 37450 fdc 37793 setindtr 43065 oe0rif 43326 cantnfresb 43365 relnonrel 43628 inaex 44338 caragenunidm 46554 |
| Copyright terms: Public domain | W3C validator |