Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 405 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3853 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 338 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1826 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3863 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4232 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 306 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 ⊆ wss 3843 ∅c0 4211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-dif 3846 df-in 3850 df-ss 3860 df-nul 4212 |
This theorem is referenced by: difn0 4253 pssdifn0 4254 difidALT 4260 vdif0 4358 difrab0eq 4359 difin0 4363 symdifv 4971 wfi 6162 ordintdif 6221 dffv2 6765 fndifnfp 6950 tfi 7589 peano5 7626 peano5OLD 7627 wfrlem8 7993 wfrlem16 8001 tz7.49 8112 oe0m1 8179 sucdom2 8678 sdomdif 8717 php3 8755 isinf 8812 unxpwdom2 9127 fin23lem26 9827 fin23lem21 9841 fin1a2lem13 9914 zornn0g 10007 fpwwe2lem12 10144 fpwwe2 10145 isumltss 15298 rpnnen2lem12 15672 symgsssg 18715 symgfisg 18716 psgnunilem5 18742 lspsnat 20038 lsppratlem6 20045 lspprat 20046 lbsextlem4 20054 cnsubrg 20279 opsrtoslem2 20869 0ntr 21824 cmpfi 22161 dfconn2 22172 filconn 22636 cfinfil 22646 ufileu 22672 alexsublem 22797 ptcmplem2 22806 ptcmplem3 22807 restmetu 23325 reconnlem1 23580 bcthlem5 24082 itg10 24442 limcnlp 24632 upgrex 27039 uvtx01vtx 27341 ex-dif 28362 strlem1 30187 difininv 30440 eqdif 30442 difioo 30680 pmtrcnelor 30939 baselcarsg 31845 difelcarsg 31849 sibfof 31879 sitg0 31885 chtvalz 32181 frpoind 33387 frind 33395 frrlem13 33457 frrlem14 33458 noextendseq 33515 sltlpss 33732 onsucconni 34271 topdifinfeq 35166 nlpineqsn 35224 fdc 35548 setindtr 40440 relnonrel 40762 inaex 41479 caragenunidm 43610 |
Copyright terms: Public domain | W3C validator |