![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3986 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1817 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | df-ss 3993 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4373 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: difn0 4390 pssdifn0 4391 difidALT 4399 vdif0 4492 difrab0eq 4493 difin0 4497 symdifv 5109 frpoind 6374 wfiOLD 6383 ordintdif 6445 dffv2 7017 fndifnfp 7210 tfi 7890 peano5 7932 peano5OLD 7933 frrlem13 8339 frrlem14 8340 wfrlem8OLD 8372 wfrlem16OLD 8380 tz7.49 8501 oe0m1 8577 sucdom2OLD 9148 sdomdif 9191 sucdom2 9269 php3 9275 php3OLD 9287 isinf 9323 isinfOLD 9324 unxpwdom2 9657 frind 9819 fin23lem26 10394 fin23lem21 10408 fin1a2lem13 10481 zornn0g 10574 fpwwe2lem12 10711 fpwwe2 10712 isumltss 15896 rpnnen2lem12 16273 symgsssg 19509 symgfisg 19510 psgnunilem5 19536 lspsnat 21170 lsppratlem6 21177 lspprat 21178 lbsextlem4 21186 cnsubrg 21468 opsrtoslem2 22103 psdmullem 22192 0ntr 23100 cmpfi 23437 dfconn2 23448 filconn 23912 cfinfil 23922 ufileu 23948 alexsublem 24073 ptcmplem2 24082 ptcmplem3 24083 restmetu 24604 reconnlem1 24867 bcthlem5 25381 itg10 25742 limcnlp 25933 noextendseq 27730 sltlpss 27963 upgrex 29127 uvtx01vtx 29432 ex-dif 30455 strlem1 32282 difininv 32547 eqdif 32549 difioo 32787 pmtrcnelor 33084 baselcarsg 34271 difelcarsg 34275 sibfof 34305 sitg0 34311 chtvalz 34606 onsucconni 36403 topdifinfeq 37316 nlpineqsn 37374 fdc 37705 setindtr 42981 oe0rif 43247 cantnfresb 43286 relnonrel 43549 inaex 44266 caragenunidm 46429 |
Copyright terms: Public domain | W3C validator |