![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 403 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3959 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3969 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4344 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∖ cdif 3946 ⊆ wss 3949 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: difn0 4365 pssdifn0 4366 difidALT 4372 vdif0 4469 difrab0eq 4470 difin0 4474 symdifv 5090 frpoind 6344 wfiOLD 6353 ordintdif 6415 dffv2 6987 fndifnfp 7174 tfi 7842 peano5 7884 peano5OLD 7885 frrlem13 8283 frrlem14 8284 wfrlem8OLD 8316 wfrlem16OLD 8324 tz7.49 8445 oe0m1 8521 sucdom2OLD 9082 sdomdif 9125 sucdom2 9206 php3 9212 php3OLD 9224 isinf 9260 isinfOLD 9261 unxpwdom2 9583 frind 9745 fin23lem26 10320 fin23lem21 10334 fin1a2lem13 10407 zornn0g 10500 fpwwe2lem12 10637 fpwwe2 10638 isumltss 15794 rpnnen2lem12 16168 symgsssg 19335 symgfisg 19336 psgnunilem5 19362 lspsnat 20758 lsppratlem6 20765 lspprat 20766 lbsextlem4 20774 cnsubrg 21005 opsrtoslem2 21617 0ntr 22575 cmpfi 22912 dfconn2 22923 filconn 23387 cfinfil 23397 ufileu 23423 alexsublem 23548 ptcmplem2 23557 ptcmplem3 23558 restmetu 24079 reconnlem1 24342 bcthlem5 24845 itg10 25205 limcnlp 25395 noextendseq 27170 sltlpss 27401 upgrex 28352 uvtx01vtx 28654 ex-dif 29676 strlem1 31503 difininv 31755 eqdif 31757 difioo 31993 pmtrcnelor 32252 baselcarsg 33305 difelcarsg 33309 sibfof 33339 sitg0 33345 chtvalz 33641 onsucconni 35322 topdifinfeq 36231 nlpineqsn 36289 fdc 36613 setindtr 41763 oe0rif 42035 cantnfresb 42074 relnonrel 42338 inaex 43056 caragenunidm 45224 |
Copyright terms: Public domain | W3C validator |