Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3893 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 334 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3903 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4274 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: difn0 4295 pssdifn0 4296 difidALT 4302 vdif0 4399 difrab0eq 4400 difin0 4404 symdifv 5011 frpoind 6230 wfiOLD 6239 ordintdif 6300 dffv2 6845 fndifnfp 7030 tfi 7675 peano5 7714 peano5OLD 7715 frrlem13 8085 frrlem14 8086 wfrlem8OLD 8118 wfrlem16OLD 8126 tz7.49 8246 oe0m1 8313 sucdom2 8822 sdomdif 8861 php3 8899 isinf 8965 unxpwdom2 9277 frind 9439 fin23lem26 10012 fin23lem21 10026 fin1a2lem13 10099 zornn0g 10192 fpwwe2lem12 10329 fpwwe2 10330 isumltss 15488 rpnnen2lem12 15862 symgsssg 18990 symgfisg 18991 psgnunilem5 19017 lspsnat 20322 lsppratlem6 20329 lspprat 20330 lbsextlem4 20338 cnsubrg 20570 opsrtoslem2 21173 0ntr 22130 cmpfi 22467 dfconn2 22478 filconn 22942 cfinfil 22952 ufileu 22978 alexsublem 23103 ptcmplem2 23112 ptcmplem3 23113 restmetu 23632 reconnlem1 23895 bcthlem5 24397 itg10 24757 limcnlp 24947 upgrex 27365 uvtx01vtx 27667 ex-dif 28688 strlem1 30513 difininv 30765 eqdif 30767 difioo 31005 pmtrcnelor 31262 baselcarsg 32173 difelcarsg 32177 sibfof 32207 sitg0 32213 chtvalz 32509 noextendseq 33797 sltlpss 34014 onsucconni 34553 topdifinfeq 35448 nlpineqsn 35506 fdc 35830 setindtr 40762 relnonrel 41084 inaex 41804 caragenunidm 43936 |
Copyright terms: Public domain | W3C validator |