![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3972 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1815 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | df-ss 3979 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4355 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ⊆ wss 3962 ∅c0 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-ss 3979 df-nul 4339 |
This theorem is referenced by: difn0 4372 pssdifn0 4373 difidALT 4382 vdif0 4474 difrab0eq 4475 difin0 4479 symdifv 5090 frpoind 6364 wfiOLD 6373 ordintdif 6435 dffv2 7003 fndifnfp 7195 tfi 7873 peano5 7915 frrlem13 8321 frrlem14 8322 wfrlem8OLD 8354 wfrlem16OLD 8362 tz7.49 8483 oe0m1 8557 sucdom2OLD 9120 sdomdif 9163 sucdom2 9240 php3 9246 php3OLD 9258 isinf 9293 isinfOLD 9294 unxpwdom2 9625 frind 9787 fin23lem26 10362 fin23lem21 10376 fin1a2lem13 10449 zornn0g 10542 fpwwe2lem12 10679 fpwwe2 10680 isumltss 15880 rpnnen2lem12 16257 symgsssg 19499 symgfisg 19500 psgnunilem5 19526 lspsnat 21164 lsppratlem6 21171 lspprat 21172 lbsextlem4 21180 cnsubrg 21462 opsrtoslem2 22097 psdmullem 22186 0ntr 23094 cmpfi 23431 dfconn2 23442 filconn 23906 cfinfil 23916 ufileu 23942 alexsublem 24067 ptcmplem2 24076 ptcmplem3 24077 restmetu 24598 reconnlem1 24861 bcthlem5 25375 itg10 25736 limcnlp 25927 noextendseq 27726 sltlpss 27959 upgrex 29123 uvtx01vtx 29428 ex-dif 30451 strlem1 32278 difininv 32544 eqdif 32546 difioo 32790 pmtrcnelor 33093 baselcarsg 34287 difelcarsg 34291 sibfof 34321 sitg0 34327 chtvalz 34622 onsucconni 36419 topdifinfeq 37332 nlpineqsn 37390 fdc 37731 setindtr 43012 oe0rif 43274 cantnfresb 43313 relnonrel 43576 inaex 44292 caragenunidm 46463 |
Copyright terms: Public domain | W3C validator |