| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman 401 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3921 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | xchbinxr 335 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 5 | df-ss 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 6 | eq0 4309 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 |
| This theorem is referenced by: difn0 4326 pssdifn0 4327 difidALT 4336 vdif0 4428 difrab0eq 4429 difin0 4433 symdifv 5045 frpoind 6303 ordintdif 6371 dffv2 6938 fndifnfp 7132 tfi 7809 peano5 7849 frrlem13 8254 frrlem14 8255 tz7.49 8390 oe0m1 8462 sdomdif 9066 sucdom2 9144 php3 9150 isinf 9183 isinfOLD 9184 unxpwdom2 9517 frind 9679 fin23lem26 10254 fin23lem21 10268 fin1a2lem13 10341 zornn0g 10434 fpwwe2lem12 10571 fpwwe2 10572 isumltss 15790 rpnnen2lem12 16169 symgsssg 19381 symgfisg 19382 psgnunilem5 19408 lspsnat 21087 lsppratlem6 21094 lspprat 21095 lbsextlem4 21103 cnsubrg 21369 opsrtoslem2 21996 psdmullem 22085 0ntr 22991 cmpfi 23328 dfconn2 23339 filconn 23803 cfinfil 23813 ufileu 23839 alexsublem 23964 ptcmplem2 23973 ptcmplem3 23974 restmetu 24491 reconnlem1 24748 bcthlem5 25261 itg10 25622 limcnlp 25812 noextendseq 27612 sltlpss 27857 upgrex 29072 uvtx01vtx 29377 ex-dif 30402 strlem1 32229 difininv 32496 eqdif 32498 difioo 32755 pmtrcnelor 33063 baselcarsg 34290 difelcarsg 34294 sibfof 34324 sitg0 34330 chtvalz 34613 onvf1odlem2 35084 onsucconni 36418 topdifinfeq 37331 nlpineqsn 37389 fdc 37732 setindtr 43006 oe0rif 43267 cantnfresb 43306 relnonrel 43569 inaex 44279 caragenunidm 46499 |
| Copyright terms: Public domain | W3C validator |