![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 402 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3957 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 334 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1821 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3967 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4342 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 |
This theorem is referenced by: difn0 4363 pssdifn0 4364 difidALT 4370 vdif0 4467 difrab0eq 4468 difin0 4472 symdifv 5088 frpoind 6340 wfiOLD 6349 ordintdif 6411 dffv2 6983 fndifnfp 7170 tfi 7838 peano5 7880 peano5OLD 7881 frrlem13 8279 frrlem14 8280 wfrlem8OLD 8312 wfrlem16OLD 8320 tz7.49 8441 oe0m1 8517 sucdom2OLD 9078 sdomdif 9121 sucdom2 9202 php3 9208 php3OLD 9220 isinf 9256 isinfOLD 9257 unxpwdom2 9579 frind 9741 fin23lem26 10316 fin23lem21 10330 fin1a2lem13 10403 zornn0g 10496 fpwwe2lem12 10633 fpwwe2 10634 isumltss 15790 rpnnen2lem12 16164 symgsssg 19329 symgfisg 19330 psgnunilem5 19356 lspsnat 20750 lsppratlem6 20757 lspprat 20758 lbsextlem4 20766 cnsubrg 20997 opsrtoslem2 21608 0ntr 22566 cmpfi 22903 dfconn2 22914 filconn 23378 cfinfil 23388 ufileu 23414 alexsublem 23539 ptcmplem2 23548 ptcmplem3 23549 restmetu 24070 reconnlem1 24333 bcthlem5 24836 itg10 25196 limcnlp 25386 noextendseq 27159 sltlpss 27390 upgrex 28341 uvtx01vtx 28643 ex-dif 29665 strlem1 31490 difininv 31742 eqdif 31744 difioo 31980 pmtrcnelor 32239 baselcarsg 33293 difelcarsg 33297 sibfof 33327 sitg0 33333 chtvalz 33629 onsucconni 35310 topdifinfeq 36219 nlpineqsn 36277 fdc 36601 setindtr 41748 oe0rif 42020 cantnfresb 42059 relnonrel 42323 inaex 43041 caragenunidm 45210 |
Copyright terms: Public domain | W3C validator |