![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdif0 | Structured version Visualization version GIF version |
Description: Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
ssdif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iman 392 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3802 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | xchbinxr 327 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
4 | 3 | albii 1863 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
5 | dfss2 3809 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | eq0 4157 | . 2 ⊢ ((𝐴 ∖ 𝐵) = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ (𝐴 ∖ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 295 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1599 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ⊆ wss 3792 ∅c0 4141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-dif 3795 df-in 3799 df-ss 3806 df-nul 4142 |
This theorem is referenced by: difn0 4173 pssdifn0 4174 difid 4179 vdif0 4261 difrab0eq 4262 difin0 4265 symdifv 4833 wfi 5968 ordintdif 6027 dffv2 6533 fndifnfp 6711 tfi 7333 peano5 7369 wfrlem8 7707 wfrlem16 7715 tz7.49 7825 oe0m1 7887 sdomdif 8398 php3 8436 sucdom2 8446 isinf 8463 unxpwdom2 8784 fin23lem26 9484 fin23lem21 9498 fin1a2lem13 9571 zornn0g 9664 fpwwe2lem13 9801 fpwwe2 9802 isumltss 14988 rpnnen2lem12 15362 symgsssg 18274 symgfisg 18275 psgnunilem5 18301 psgnunilem5OLD 18302 lspsnat 19545 lsppratlem6 19553 lspprat 19554 lbsextlem4 19562 opsrtoslem2 19885 cnsubrg 20206 0ntr 21287 cmpfi 21624 dfconn2 21635 filconn 22099 cfinfil 22109 ufileu 22135 alexsublem 22260 ptcmplem2 22269 ptcmplem3 22270 restmetu 22787 reconnlem1 23041 bcthlem5 23538 itg10 23896 limcnlp 24083 upgrex 26444 uvtx01vtx 26749 ex-dif 27859 strlem1 29685 difininv 29920 difioo 30112 baselcarsg 30970 difelcarsg 30974 sibfof 31004 sitg0 31010 chtvalz 31313 frpoind 32333 frind 32336 noextendseq 32413 onsucconni 33023 topdifinfeq 33796 fdc 34170 setindtr 38560 relnonrel 38860 caragenunidm 41659 |
Copyright terms: Public domain | W3C validator |