Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 4321 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 4070 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 4081 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2767 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3898 ∅c0 4273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3904 df-nul 4274 |
This theorem is referenced by: unvdif 4425 disjdif2 4430 csbdif 4476 iinvdif 5031 symdif0 5036 dffv2 6923 2oconcl 8408 oe0m0 8425 oev2 8428 infdiffi 9519 cnfcom2lem 9562 brttrcl2 9575 ttrcltr 9577 rnttrcl 9583 m1bits 16246 mreexdomd 17455 efgi0 19421 vrgpinv 19470 frgpuptinv 19472 frgpnabllem1 19569 gsumval3 19602 gsumcllem 19603 dprddisj2 19736 0cld 22294 indiscld 22347 mretopd 22348 hauscmplem 22662 cfinfil 23149 csdfil 23150 filufint 23176 bcth3 24600 rembl 24809 volsup 24825 disjdifprg 31199 tocycf 31669 tocyc01 31670 prsiga 32395 sigapildsyslem 32425 sigapildsys 32426 sxbrsigalem3 32537 0elcarsg 32572 carsgclctunlem3 32585 new0 34166 onint1 34775 lindsdom 35927 ntrclscls00 42049 ntrclskb 42052 compne 42432 prsal 44247 saluni 44253 caragen0 44433 carageniuncllem1 44448 iscnrm3rlem4 46655 aacllem 46923 |
Copyright terms: Public domain | W3C validator |