| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4326 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4073 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4085 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2756 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: unvdif 4425 disjdif2 4430 csbdif 4474 iinvdif 5028 symdif0 5033 dffv2 6917 2oconcl 8418 oe0m0 8435 oev2 8438 infdiffi 9548 cnfcom2lem 9591 brttrcl2 9604 ttrcltr 9606 rnttrcl 9612 m1bits 16351 mreexdomd 17555 efgi0 19633 vrgpinv 19682 frgpuptinv 19684 frgpnabllem1 19786 gsumval3 19820 gsumcllem 19821 dprddisj2 19954 0cld 22954 indiscld 23007 mretopd 23008 hauscmplem 23322 cfinfil 23809 csdfil 23810 filufint 23836 bcth3 25259 rembl 25469 volsup 25485 new0 27820 disjdifprg 32553 tocycf 33084 tocyc01 33085 prsiga 34142 sigapildsyslem 34172 sigapildsys 34173 sxbrsigalem3 34283 0elcarsg 34318 carsgclctunlem3 34331 onint1 36489 lindsdom 37660 oe0rif 43324 tfsconcat0i 43384 ntrclscls00 44105 ntrclskb 44108 compne 44479 prsal 46362 saluni 46369 caragen0 46550 carageniuncllem1 46565 iscnrm3rlem4 48980 aacllem 49839 |
| Copyright terms: Public domain | W3C validator |