| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4351 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4098 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4110 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2760 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: unvdif 4450 disjdif2 4455 csbdif 4499 iinvdif 5056 symdif0 5061 dffv2 6974 2oconcl 8515 oe0m0 8532 oev2 8535 infdiffi 9672 cnfcom2lem 9715 brttrcl2 9728 ttrcltr 9730 rnttrcl 9736 m1bits 16459 mreexdomd 17661 efgi0 19701 vrgpinv 19750 frgpuptinv 19752 frgpnabllem1 19854 gsumval3 19888 gsumcllem 19889 dprddisj2 20022 0cld 22976 indiscld 23029 mretopd 23030 hauscmplem 23344 cfinfil 23831 csdfil 23832 filufint 23858 bcth3 25283 rembl 25493 volsup 25509 new0 27838 disjdifprg 32556 tocycf 33128 tocyc01 33129 prsiga 34162 sigapildsyslem 34192 sigapildsys 34193 sxbrsigalem3 34304 0elcarsg 34339 carsgclctunlem3 34352 onint1 36467 lindsdom 37638 oe0rif 43309 tfsconcat0i 43369 ntrclscls00 44090 ntrclskb 44093 compne 44465 prsal 46347 saluni 46354 caragen0 46535 carageniuncllem1 46550 iscnrm3rlem4 48917 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |