Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 4304 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 4054 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 4065 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-nul 4257 |
This theorem is referenced by: unvdif 4408 disjdif2 4413 csbdif 4458 iinvdif 5009 symdif0 5014 dffv2 6863 2oconcl 8333 oe0m0 8350 oev2 8353 infdiffi 9416 cnfcom2lem 9459 brttrcl2 9472 ttrcltr 9474 rnttrcl 9480 m1bits 16147 mreexdomd 17358 efgi0 19326 vrgpinv 19375 frgpuptinv 19377 frgpnabllem1 19474 gsumval3 19508 gsumcllem 19509 dprddisj2 19642 0cld 22189 indiscld 22242 mretopd 22243 hauscmplem 22557 cfinfil 23044 csdfil 23045 filufint 23071 bcth3 24495 rembl 24704 volsup 24720 disjdifprg 30914 tocycf 31384 tocyc01 31385 prsiga 32099 sigapildsyslem 32129 sigapildsys 32130 sxbrsigalem3 32239 0elcarsg 32274 carsgclctunlem3 32287 new0 34058 onint1 34638 lindsdom 35771 ntrclscls00 41676 ntrclskb 41679 compne 42059 prsal 43859 saluni 43865 caragen0 44044 carageniuncllem1 44059 iscnrm3rlem4 46237 aacllem 46505 |
Copyright terms: Public domain | W3C validator |