| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4325 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4072 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4084 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2758 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: unvdif 4424 disjdif2 4429 csbdif 4475 iinvdif 5032 symdif0 5037 dffv2 6925 2oconcl 8426 oe0m0 8443 oev2 8446 infdiffi 9557 cnfcom2lem 9600 brttrcl2 9613 ttrcltr 9615 rnttrcl 9621 m1bits 16355 mreexdomd 17559 efgi0 19636 vrgpinv 19685 frgpuptinv 19687 frgpnabllem1 19789 gsumval3 19823 gsumcllem 19824 dprddisj2 19957 0cld 22956 indiscld 23009 mretopd 23010 hauscmplem 23324 cfinfil 23811 csdfil 23812 filufint 23838 bcth3 25261 rembl 25471 volsup 25487 new0 27822 disjdifprg 32559 indconst0 32848 tocycf 33095 tocyc01 33096 prsiga 34167 sigapildsyslem 34197 sigapildsys 34198 sxbrsigalem3 34308 0elcarsg 34343 carsgclctunlem3 34356 onint1 36516 lindsdom 37677 oe0rif 43405 tfsconcat0i 43465 ntrclscls00 44186 ntrclskb 44189 compne 44560 prsal 46443 saluni 46450 caragen0 46631 carageniuncllem1 46646 iscnrm3rlem4 49070 aacllem 49929 |
| Copyright terms: Public domain | W3C validator |