| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4339 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4086 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4098 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2754 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: unvdif 4438 disjdif2 4443 csbdif 4487 iinvdif 5044 symdif0 5049 dffv2 6956 2oconcl 8467 oe0m0 8484 oev2 8487 infdiffi 9611 cnfcom2lem 9654 brttrcl2 9667 ttrcltr 9669 rnttrcl 9675 m1bits 16410 mreexdomd 17610 efgi0 19650 vrgpinv 19699 frgpuptinv 19701 frgpnabllem1 19803 gsumval3 19837 gsumcllem 19838 dprddisj2 19971 0cld 22925 indiscld 22978 mretopd 22979 hauscmplem 23293 cfinfil 23780 csdfil 23781 filufint 23807 bcth3 25231 rembl 25441 volsup 25457 new0 27786 disjdifprg 32504 tocycf 33074 tocyc01 33075 prsiga 34121 sigapildsyslem 34151 sigapildsys 34152 sxbrsigalem3 34263 0elcarsg 34298 carsgclctunlem3 34311 onint1 36437 lindsdom 37608 oe0rif 43274 tfsconcat0i 43334 ntrclscls00 44055 ntrclskb 44058 compne 44430 prsal 46316 saluni 46323 caragen0 46504 carageniuncllem1 46519 iscnrm3rlem4 48931 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |