Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 4301 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 4050 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 4061 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2768 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-nul 4254 |
This theorem is referenced by: unvdif 4405 disjdif2 4410 csbdif 4455 iinvdif 5005 symdif0 5010 dffv2 6845 2oconcl 8295 oe0m0 8312 oev2 8315 infdiffi 9346 cnfcom2lem 9389 m1bits 16075 mreexdomd 17275 efgi0 19241 vrgpinv 19290 frgpuptinv 19292 frgpnabllem1 19389 gsumval3 19423 gsumcllem 19424 dprddisj2 19557 0cld 22097 indiscld 22150 mretopd 22151 hauscmplem 22465 cfinfil 22952 csdfil 22953 filufint 22979 bcth3 24400 rembl 24609 volsup 24625 disjdifprg 30815 tocycf 31286 tocyc01 31287 prsiga 31999 sigapildsyslem 32029 sigapildsys 32030 sxbrsigalem3 32139 0elcarsg 32174 carsgclctunlem3 32187 brttrcl2 33700 ttrcltr 33702 rnttrcl 33708 new0 33985 onint1 34565 lindsdom 35698 ntrclscls00 41565 ntrclskb 41568 compne 41948 prsal 43749 saluni 43755 caragen0 43934 carageniuncllem1 43949 iscnrm3rlem4 46125 aacllem 46391 |
Copyright terms: Public domain | W3C validator |