| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4342 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4089 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4101 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2755 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: unvdif 4441 disjdif2 4446 csbdif 4490 iinvdif 5047 symdif0 5052 dffv2 6959 2oconcl 8470 oe0m0 8487 oev2 8490 infdiffi 9618 cnfcom2lem 9661 brttrcl2 9674 ttrcltr 9676 rnttrcl 9682 m1bits 16417 mreexdomd 17617 efgi0 19657 vrgpinv 19706 frgpuptinv 19708 frgpnabllem1 19810 gsumval3 19844 gsumcllem 19845 dprddisj2 19978 0cld 22932 indiscld 22985 mretopd 22986 hauscmplem 23300 cfinfil 23787 csdfil 23788 filufint 23814 bcth3 25238 rembl 25448 volsup 25464 new0 27793 disjdifprg 32511 tocycf 33081 tocyc01 33082 prsiga 34128 sigapildsyslem 34158 sigapildsys 34159 sxbrsigalem3 34270 0elcarsg 34305 carsgclctunlem3 34318 onint1 36444 lindsdom 37615 oe0rif 43281 tfsconcat0i 43341 ntrclscls00 44062 ntrclskb 44065 compne 44437 prsal 46323 saluni 46330 caragen0 46511 carageniuncllem1 46526 iscnrm3rlem4 48935 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |