![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version |
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difid 4398 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
2 | 1 | difeq2i 4146 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
3 | difdif 4158 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
4 | 2, 3 | eqtr3i 2770 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-nul 4353 |
This theorem is referenced by: unvdif 4498 disjdif2 4503 csbdif 4547 iinvdif 5103 symdif0 5108 dffv2 7017 2oconcl 8559 oe0m0 8576 oev2 8579 infdiffi 9727 cnfcom2lem 9770 brttrcl2 9783 ttrcltr 9785 rnttrcl 9791 m1bits 16486 mreexdomd 17707 efgi0 19762 vrgpinv 19811 frgpuptinv 19813 frgpnabllem1 19915 gsumval3 19949 gsumcllem 19950 dprddisj2 20083 0cld 23067 indiscld 23120 mretopd 23121 hauscmplem 23435 cfinfil 23922 csdfil 23923 filufint 23949 bcth3 25384 rembl 25594 volsup 25610 new0 27931 disjdifprg 32597 tocycf 33110 tocyc01 33111 prsiga 34095 sigapildsyslem 34125 sigapildsys 34126 sxbrsigalem3 34237 0elcarsg 34272 carsgclctunlem3 34285 onint1 36415 lindsdom 37574 oe0rif 43247 tfsconcat0i 43307 ntrclscls00 44028 ntrclskb 44031 compne 44410 prsal 46239 saluni 46246 caragen0 46427 carageniuncllem1 46442 iscnrm3rlem4 48623 aacllem 48895 |
Copyright terms: Public domain | W3C validator |