MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif0 Structured version   Visualization version   GIF version

Theorem dif0 4328
Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
dif0 (𝐴 ∖ ∅) = 𝐴

Proof of Theorem dif0
StepHypRef Expression
1 difid 4326 . . 3 (𝐴𝐴) = ∅
21difeq2i 4073 . 2 (𝐴 ∖ (𝐴𝐴)) = (𝐴 ∖ ∅)
3 difdif 4085 . 2 (𝐴 ∖ (𝐴𝐴)) = 𝐴
42, 3eqtr3i 2756 1 (𝐴 ∖ ∅) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3899  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-nul 4284
This theorem is referenced by:  unvdif  4425  disjdif2  4430  csbdif  4474  iinvdif  5028  symdif0  5033  dffv2  6917  2oconcl  8418  oe0m0  8435  oev2  8438  infdiffi  9548  cnfcom2lem  9591  brttrcl2  9604  ttrcltr  9606  rnttrcl  9612  m1bits  16351  mreexdomd  17555  efgi0  19633  vrgpinv  19682  frgpuptinv  19684  frgpnabllem1  19786  gsumval3  19820  gsumcllem  19821  dprddisj2  19954  0cld  22954  indiscld  23007  mretopd  23008  hauscmplem  23322  cfinfil  23809  csdfil  23810  filufint  23836  bcth3  25259  rembl  25469  volsup  25485  new0  27820  disjdifprg  32553  tocycf  33084  tocyc01  33085  prsiga  34142  sigapildsyslem  34172  sigapildsys  34173  sxbrsigalem3  34283  0elcarsg  34318  carsgclctunlem3  34331  onint1  36489  lindsdom  37660  oe0rif  43324  tfsconcat0i  43384  ntrclscls00  44105  ntrclskb  44108  compne  44479  prsal  46362  saluni  46369  caragen0  46550  carageniuncllem1  46565  iscnrm3rlem4  48980  aacllem  49839
  Copyright terms: Public domain W3C validator