| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif0 | Structured version Visualization version GIF version | ||
| Description: The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif0 | ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difid 4329 | . . 3 ⊢ (𝐴 ∖ 𝐴) = ∅ | |
| 2 | 1 | difeq2i 4076 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = (𝐴 ∖ ∅) |
| 3 | difdif 4088 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ 𝐴)) = 𝐴 | |
| 4 | 2, 3 | eqtr3i 2754 | 1 ⊢ (𝐴 ∖ ∅) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3902 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: unvdif 4428 disjdif2 4433 csbdif 4477 iinvdif 5032 symdif0 5037 dffv2 6922 2oconcl 8428 oe0m0 8445 oev2 8448 infdiffi 9573 cnfcom2lem 9616 brttrcl2 9629 ttrcltr 9631 rnttrcl 9637 m1bits 16369 mreexdomd 17573 efgi0 19617 vrgpinv 19666 frgpuptinv 19668 frgpnabllem1 19770 gsumval3 19804 gsumcllem 19805 dprddisj2 19938 0cld 22941 indiscld 22994 mretopd 22995 hauscmplem 23309 cfinfil 23796 csdfil 23797 filufint 23823 bcth3 25247 rembl 25457 volsup 25473 new0 27806 disjdifprg 32537 tocycf 33072 tocyc01 33073 prsiga 34100 sigapildsyslem 34130 sigapildsys 34131 sxbrsigalem3 34242 0elcarsg 34277 carsgclctunlem3 34290 onint1 36425 lindsdom 37596 oe0rif 43261 tfsconcat0i 43321 ntrclscls00 44042 ntrclskb 44045 compne 44417 prsal 46303 saluni 46310 caragen0 46491 carageniuncllem1 46506 iscnrm3rlem4 48931 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |