![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3905 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssdif0 4237 | . 2 ⊢ (𝐴 ⊆ 𝐴 ↔ (𝐴 ∖ 𝐴) = ∅) | |
3 | 1, 2 | mpbi 231 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ∖ cdif 3851 ⊆ wss 3854 ∅c0 4206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-v 3434 df-dif 3857 df-in 3861 df-ss 3869 df-nul 4207 |
This theorem is referenced by: dif0 4246 difun2 4337 diftpsn3 4636 symdifid 4902 difxp1 5890 difxp2 5891 2oconcl 7970 oev2 7990 fin1a2lem13 9669 ruclem13 15416 strle1 16409 efgi1 18562 frgpuptinv 18612 gsumdifsnd 18789 dprdsn 18863 ablfac1eulem 18899 fctop 21284 cctop 21286 topcld 21315 indiscld 21371 mretopd 21372 restcld 21452 conndisj 21696 csdfil 22174 ufinffr 22209 prdsxmslem2 22810 bcth3 23605 voliunlem3 23824 uhgr0vb 26528 uhgr0 26529 nbgr1vtx 26811 uvtx01vtx 26850 cplgr1v 26883 frgr1v 27730 1vwmgr 27735 difres 30016 imadifxp 30017 difico 30166 fzodif1 30174 lindssn 30540 lbslsat 30573 0elsiga 30946 prsiga 30963 fiunelcarsg 31147 sibf0 31165 probun 31250 ballotlemfp1 31322 onint1 33350 poimirlem22 34391 poimirlem30 34399 zrdivrng 34709 ntrk0kbimka 39825 clsk3nimkb 39826 ntrclscls00 39852 ntrclskb 39855 ntrneicls11 39876 compne 40264 fzdifsuc2 41071 dvmptfprodlem 41724 fouriercn 42013 prsal 42099 caragenuncllem 42290 carageniuncllem1 42299 caratheodorylem1 42304 gsumdifsndf 43845 |
Copyright terms: Public domain | W3C validator |