Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3896 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4260 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 {crab 3068 ∖ cdif 3884 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-rab 3073 df-dif 3890 df-nul 4257 |
This theorem is referenced by: dif0 4306 difun2 4414 diftpsn3 4735 symdifid 5016 difxp1 6068 difxp2 6069 2oconcl 8333 oev2 8353 fin1a2lem13 10168 ruclem13 15951 strle1 16859 efgi1 19327 frgpuptinv 19377 gsumdifsnd 19562 dprdsn 19639 ablfac1eulem 19675 fctop 22154 cctop 22156 topcld 22186 indiscld 22242 mretopd 22243 restcld 22323 conndisj 22567 csdfil 23045 ufinffr 23080 prdsxmslem2 23685 bcth3 24495 voliunlem3 24716 uhgr0vb 27442 uhgr0 27443 nbgr1vtx 27725 uvtx01vtx 27764 cplgr1v 27797 frgr1v 28635 1vwmgr 28640 difres 30939 imadifxp 30940 difico 31104 fzodif1 31114 symgcom2 31353 cycpmrn 31410 tocyccntz 31411 lindssn 31573 lbslsat 31699 0elsiga 32082 prsiga 32099 fiunelcarsg 32283 sibf0 32301 probun 32386 ballotlemfp1 32458 sltlpss 34087 onint1 34638 poimirlem22 35799 poimirlem30 35807 zrdivrng 36111 ntrk0kbimka 41649 clsk3nimkb 41650 ntrclscls00 41676 ntrclskb 41679 ntrneicls11 41700 compne 42059 fzdifsuc2 42849 dvmptfprodlem 43485 fouriercn 43773 prsal 43859 caragenuncllem 44050 carageniuncllem1 44059 caratheodorylem1 44064 gsumdifsndf 45375 |
Copyright terms: Public domain | W3C validator |