| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3940 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4317 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2762 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3420 ∖ cdif 3928 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-rab 3421 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: dif0 4358 difun2 4461 diftpsn3 4783 symdifid 5068 difxp1 6159 difxp2 6160 2oconcl 8520 oev2 8540 fin1a2lem13 10431 ruclem13 16265 strle1 17182 efgi1 19707 frgpuptinv 19757 gsumdifsnd 19947 dprdsn 20024 ablfac1eulem 20060 fctop 22947 cctop 22949 topcld 22978 indiscld 23034 mretopd 23035 restcld 23115 conndisj 23359 csdfil 23837 ufinffr 23872 prdsxmslem2 24473 bcth3 25288 voliunlem3 25510 sltlpss 27876 slelss 27877 uhgr0vb 29056 uhgr0 29057 nbgr1vtx 29342 uvtx01vtx 29381 cplgr1v 29414 frgr1v 30257 1vwmgr 30262 difres 32586 imadifxp 32587 mptiffisupp 32675 difico 32765 fzodif1 32774 s1chn 32995 chnccats1 33000 symgcom2 33100 cycpmrn 33159 tocyccntz 33160 lindssn 33398 lbslsat 33661 0elsiga 34150 prsiga 34167 fiunelcarsg 34353 sibf0 34371 probun 34456 ballotlemfp1 34529 onint1 36472 poimirlem22 37671 poimirlem30 37679 zrdivrng 37982 safesnsupfilb 43409 ntrk0kbimka 44030 clsk3nimkb 44031 ntrclscls00 44057 ntrclskb 44060 ntrneicls11 44081 compne 44432 fzdifsuc2 45306 dvmptfprodlem 45940 fouriercn 46228 prsal 46314 caragenuncllem 46508 carageniuncllem1 46517 caratheodorylem1 46522 gsumdifsndf 48123 |
| Copyright terms: Public domain | W3C validator |