| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3923 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4300 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3405 ∖ cdif 3911 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3406 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: dif0 4341 difun2 4444 diftpsn3 4766 symdifid 5051 difxp1 6138 difxp2 6139 2oconcl 8467 oev2 8487 fin1a2lem13 10365 ruclem13 16210 strle1 17128 efgi1 19651 frgpuptinv 19701 gsumdifsnd 19891 dprdsn 19968 ablfac1eulem 20004 fctop 22891 cctop 22893 topcld 22922 indiscld 22978 mretopd 22979 restcld 23059 conndisj 23303 csdfil 23781 ufinffr 23816 prdsxmslem2 24417 bcth3 25231 voliunlem3 25453 sltlpss 27819 slelss 27820 uhgr0vb 28999 uhgr0 29000 nbgr1vtx 29285 uvtx01vtx 29324 cplgr1v 29357 frgr1v 30200 1vwmgr 30205 difres 32529 imadifxp 32530 mptiffisupp 32616 difico 32706 fzodif1 32715 s1chn 32936 chnccats1 32941 symgcom2 33041 cycpmrn 33100 tocyccntz 33101 lindssn 33349 lbslsat 33612 0elsiga 34104 prsiga 34121 fiunelcarsg 34307 sibf0 34325 probun 34410 ballotlemfp1 34483 onint1 36437 poimirlem22 37636 poimirlem30 37644 zrdivrng 37947 safesnsupfilb 43407 ntrk0kbimka 44028 clsk3nimkb 44029 ntrclscls00 44055 ntrclskb 44058 ntrneicls11 44079 compne 44430 fzdifsuc2 45308 dvmptfprodlem 45942 fouriercn 46230 prsal 46316 caragenuncllem 46510 carageniuncllem1 46519 caratheodorylem1 46524 gsumdifsndf 48169 |
| Copyright terms: Public domain | W3C validator |