Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3867 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4228 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2784 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 {crab 3074 ∖ cdif 3855 ∅c0 4225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-rab 3079 df-dif 3861 df-nul 4226 |
This theorem is referenced by: dif0 4271 difun2 4377 diftpsn3 4692 symdifid 4974 difxp1 5994 difxp2 5995 2oconcl 8138 oev2 8158 fin1a2lem13 9872 ruclem13 15643 strle1 16650 efgi1 18914 frgpuptinv 18964 gsumdifsnd 19149 dprdsn 19226 ablfac1eulem 19262 fctop 21704 cctop 21706 topcld 21735 indiscld 21791 mretopd 21792 restcld 21872 conndisj 22116 csdfil 22594 ufinffr 22629 prdsxmslem2 23231 bcth3 24031 voliunlem3 24252 uhgr0vb 26964 uhgr0 26965 nbgr1vtx 27247 uvtx01vtx 27286 cplgr1v 27319 frgr1v 28155 1vwmgr 28160 difres 30461 imadifxp 30462 difico 30628 fzodif1 30638 symgcom2 30879 cycpmrn 30936 tocyccntz 30937 lindssn 31094 lbslsat 31220 0elsiga 31601 prsiga 31618 fiunelcarsg 31802 sibf0 31820 probun 31905 ballotlemfp1 31977 onint1 34187 poimirlem22 35359 poimirlem30 35367 zrdivrng 35671 ntrk0kbimka 41115 clsk3nimkb 41116 ntrclscls00 41142 ntrclskb 41145 ntrneicls11 41166 compne 41518 fzdifsuc2 42310 dvmptfprodlem 42952 fouriercn 43240 prsal 43326 caragenuncllem 43517 carageniuncllem1 43526 caratheodorylem1 43531 gsumdifsndf 44808 |
Copyright terms: Public domain | W3C validator |