| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3907 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4286 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 {crab 3396 ∖ cdif 3895 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-rab 3397 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: dif0 4327 difun2 4430 diftpsn3 4753 symdifid 5037 difxp1 6117 difxp2 6118 2oconcl 8424 oev2 8444 fin1a2lem13 10310 ruclem13 16153 strle1 17071 s1chn 18528 chnccats1 18533 chnccat 18534 efgi1 19635 frgpuptinv 19685 gsumdifsnd 19875 dprdsn 19952 ablfac1eulem 19988 fctop 22920 cctop 22922 topcld 22951 indiscld 23007 mretopd 23008 restcld 23088 conndisj 23332 csdfil 23810 ufinffr 23845 prdsxmslem2 24445 bcth3 25259 voliunlem3 25481 sltlpss 27854 slelss 27855 uhgr0vb 29052 uhgr0 29053 nbgr1vtx 29338 uvtx01vtx 29377 cplgr1v 29410 frgr1v 30253 1vwmgr 30258 difres 32582 imadifxp 32583 mptiffisupp 32678 difico 32770 fzodif1 32779 indconst1 32847 symgcom2 33060 cycpmrn 33119 tocyccntz 33120 lindssn 33350 lbslsat 33650 0elsiga 34148 prsiga 34165 fiunelcarsg 34350 sibf0 34368 probun 34453 ballotlemfp1 34526 onint1 36514 poimirlem22 37702 poimirlem30 37710 zrdivrng 38013 safesnsupfilb 43535 ntrk0kbimka 44156 clsk3nimkb 44157 ntrclscls00 44183 ntrclskb 44186 ntrneicls11 44207 compne 44557 fzdifsuc2 45435 dvmptfprodlem 46066 fouriercn 46354 prsal 46440 caragenuncllem 46634 carageniuncllem1 46643 caratheodorylem1 46648 gsumdifsndf 48305 |
| Copyright terms: Public domain | W3C validator |