| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3911 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4287 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3899 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: dif0 4328 difun2 4431 diftpsn3 4754 symdifid 5035 difxp1 6112 difxp2 6113 2oconcl 8418 oev2 8438 fin1a2lem13 10300 ruclem13 16148 strle1 17066 s1chn 18523 chnccats1 18528 chnccat 18529 efgi1 19631 frgpuptinv 19681 gsumdifsnd 19871 dprdsn 19948 ablfac1eulem 19984 fctop 22917 cctop 22919 topcld 22948 indiscld 23004 mretopd 23005 restcld 23085 conndisj 23329 csdfil 23807 ufinffr 23842 prdsxmslem2 24442 bcth3 25256 voliunlem3 25478 sltlpss 27851 slelss 27852 uhgr0vb 29048 uhgr0 29049 nbgr1vtx 29334 uvtx01vtx 29373 cplgr1v 29406 frgr1v 30246 1vwmgr 30251 difres 32575 imadifxp 32576 mptiffisupp 32669 difico 32761 fzodif1 32770 symgcom2 33048 cycpmrn 33107 tocyccntz 33108 lindssn 33338 lbslsat 33624 0elsiga 34122 prsiga 34139 fiunelcarsg 34324 sibf0 34342 probun 34427 ballotlemfp1 34500 onint1 36482 poimirlem22 37681 poimirlem30 37689 zrdivrng 37992 safesnsupfilb 43450 ntrk0kbimka 44071 clsk3nimkb 44072 ntrclscls00 44098 ntrclskb 44101 ntrneicls11 44122 compne 44472 fzdifsuc2 45350 dvmptfprodlem 45981 fouriercn 46269 prsal 46355 caragenuncllem 46549 carageniuncllem1 46558 caratheodorylem1 46563 gsumdifsndf 48211 |
| Copyright terms: Public domain | W3C validator |