| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3926 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4303 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3408 ∖ cdif 3914 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: dif0 4344 difun2 4447 diftpsn3 4769 symdifid 5054 difxp1 6141 difxp2 6142 2oconcl 8470 oev2 8490 fin1a2lem13 10372 ruclem13 16217 strle1 17135 efgi1 19658 frgpuptinv 19708 gsumdifsnd 19898 dprdsn 19975 ablfac1eulem 20011 fctop 22898 cctop 22900 topcld 22929 indiscld 22985 mretopd 22986 restcld 23066 conndisj 23310 csdfil 23788 ufinffr 23823 prdsxmslem2 24424 bcth3 25238 voliunlem3 25460 sltlpss 27826 slelss 27827 uhgr0vb 29006 uhgr0 29007 nbgr1vtx 29292 uvtx01vtx 29331 cplgr1v 29364 frgr1v 30207 1vwmgr 30212 difres 32536 imadifxp 32537 mptiffisupp 32623 difico 32713 fzodif1 32722 s1chn 32943 chnccats1 32948 symgcom2 33048 cycpmrn 33107 tocyccntz 33108 lindssn 33356 lbslsat 33619 0elsiga 34111 prsiga 34128 fiunelcarsg 34314 sibf0 34332 probun 34417 ballotlemfp1 34490 onint1 36444 poimirlem22 37643 poimirlem30 37651 zrdivrng 37954 safesnsupfilb 43414 ntrk0kbimka 44035 clsk3nimkb 44036 ntrclscls00 44062 ntrclskb 44065 ntrneicls11 44086 compne 44437 fzdifsuc2 45315 dvmptfprodlem 45949 fouriercn 46237 prsal 46323 caragenuncllem 46517 carageniuncllem1 46526 caratheodorylem1 46531 gsumdifsndf 48173 |
| Copyright terms: Public domain | W3C validator |