![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3972 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4343 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2766 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 {crab 3433 ∖ cdif 3960 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-rab 3434 df-dif 3966 df-nul 4340 |
This theorem is referenced by: dif0 4384 difun2 4487 diftpsn3 4807 symdifid 5092 difxp1 6187 difxp2 6188 2oconcl 8540 oev2 8560 fin1a2lem13 10450 ruclem13 16275 strle1 17192 efgi1 19754 frgpuptinv 19804 gsumdifsnd 19994 dprdsn 20071 ablfac1eulem 20107 fctop 23027 cctop 23029 topcld 23059 indiscld 23115 mretopd 23116 restcld 23196 conndisj 23440 csdfil 23918 ufinffr 23953 prdsxmslem2 24558 bcth3 25379 voliunlem3 25601 sltlpss 27960 slelss 27961 uhgr0vb 29104 uhgr0 29105 nbgr1vtx 29390 uvtx01vtx 29429 cplgr1v 29462 frgr1v 30300 1vwmgr 30305 difres 32620 imadifxp 32621 mptiffisupp 32708 difico 32792 fzodif1 32801 symgcom2 33087 cycpmrn 33146 tocyccntz 33147 lindssn 33386 lbslsat 33644 0elsiga 34095 prsiga 34112 fiunelcarsg 34298 sibf0 34316 probun 34401 ballotlemfp1 34473 onint1 36432 poimirlem22 37629 poimirlem30 37637 zrdivrng 37940 safesnsupfilb 43408 ntrk0kbimka 44029 clsk3nimkb 44030 ntrclscls00 44056 ntrclskb 44059 ntrneicls11 44080 compne 44437 fzdifsuc2 45261 dvmptfprodlem 45900 fouriercn 46188 prsal 46274 caragenuncllem 46468 carageniuncllem1 46477 caratheodorylem1 46482 gsumdifsndf 48025 |
Copyright terms: Public domain | W3C validator |