![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3958 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4327 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2764 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 {crab 3433 ∖ cdif 3946 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-rab 3434 df-dif 3952 df-nul 4324 |
This theorem is referenced by: dif0 4373 difun2 4481 diftpsn3 4806 symdifid 5091 difxp1 6165 difxp2 6166 2oconcl 8503 oev2 8523 fin1a2lem13 10407 ruclem13 16185 strle1 17091 efgi1 19589 frgpuptinv 19639 gsumdifsnd 19829 dprdsn 19906 ablfac1eulem 19942 fctop 22507 cctop 22509 topcld 22539 indiscld 22595 mretopd 22596 restcld 22676 conndisj 22920 csdfil 23398 ufinffr 23433 prdsxmslem2 24038 bcth3 24848 voliunlem3 25069 sltlpss 27401 uhgr0vb 28332 uhgr0 28333 nbgr1vtx 28615 uvtx01vtx 28654 cplgr1v 28687 frgr1v 29524 1vwmgr 29529 difres 31831 imadifxp 31832 mptiffisupp 31915 difico 31994 fzodif1 32004 symgcom2 32245 cycpmrn 32302 tocyccntz 32303 lindssn 32494 lbslsat 32701 0elsiga 33112 prsiga 33129 fiunelcarsg 33315 sibf0 33333 probun 33418 ballotlemfp1 33490 onint1 35334 poimirlem22 36510 poimirlem30 36518 zrdivrng 36821 safesnsupfilb 42169 ntrk0kbimka 42790 clsk3nimkb 42791 ntrclscls00 42817 ntrclskb 42820 ntrneicls11 42841 compne 43200 fzdifsuc2 44020 dvmptfprodlem 44660 fouriercn 44948 prsal 45034 caragenuncllem 45228 carageniuncllem1 45237 caratheodorylem1 45242 gsumdifsndf 46591 |
Copyright terms: Public domain | W3C validator |