| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version | ||
| Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdif2 3914 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 2 | dfnul3 4290 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rab 3397 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: dif0 4331 difun2 4434 diftpsn3 4756 symdifid 5039 difxp1 6118 difxp2 6119 2oconcl 8428 oev2 8448 fin1a2lem13 10325 ruclem13 16169 strle1 17087 efgi1 19618 frgpuptinv 19668 gsumdifsnd 19858 dprdsn 19935 ablfac1eulem 19971 fctop 22907 cctop 22909 topcld 22938 indiscld 22994 mretopd 22995 restcld 23075 conndisj 23319 csdfil 23797 ufinffr 23832 prdsxmslem2 24433 bcth3 25247 voliunlem3 25469 sltlpss 27840 slelss 27841 uhgr0vb 29035 uhgr0 29036 nbgr1vtx 29321 uvtx01vtx 29360 cplgr1v 29393 frgr1v 30233 1vwmgr 30238 difres 32562 imadifxp 32563 mptiffisupp 32649 difico 32739 fzodif1 32748 s1chn 32965 chnccats1 32970 symgcom2 33039 cycpmrn 33098 tocyccntz 33099 lindssn 33325 lbslsat 33588 0elsiga 34080 prsiga 34097 fiunelcarsg 34283 sibf0 34301 probun 34386 ballotlemfp1 34459 onint1 36422 poimirlem22 37621 poimirlem30 37629 zrdivrng 37932 safesnsupfilb 43391 ntrk0kbimka 44012 clsk3nimkb 44013 ntrclscls00 44039 ntrclskb 44042 ntrneicls11 44063 compne 44414 fzdifsuc2 45292 dvmptfprodlem 45926 fouriercn 46214 prsal 46300 caragenuncllem 46494 carageniuncllem1 46503 caratheodorylem1 46508 gsumdifsndf 48166 |
| Copyright terms: Public domain | W3C validator |