![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3985 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4356 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 {crab 3443 ∖ cdif 3973 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rab 3444 df-dif 3979 df-nul 4353 |
This theorem is referenced by: dif0 4400 difun2 4504 diftpsn3 4827 symdifid 5110 difxp1 6196 difxp2 6197 2oconcl 8559 oev2 8579 fin1a2lem13 10481 ruclem13 16290 strle1 17205 efgi1 19763 frgpuptinv 19813 gsumdifsnd 20003 dprdsn 20080 ablfac1eulem 20116 fctop 23032 cctop 23034 topcld 23064 indiscld 23120 mretopd 23121 restcld 23201 conndisj 23445 csdfil 23923 ufinffr 23958 prdsxmslem2 24563 bcth3 25384 voliunlem3 25606 sltlpss 27963 slelss 27964 uhgr0vb 29107 uhgr0 29108 nbgr1vtx 29393 uvtx01vtx 29432 cplgr1v 29465 frgr1v 30303 1vwmgr 30308 difres 32622 imadifxp 32623 mptiffisupp 32705 difico 32788 fzodif1 32798 symgcom2 33077 cycpmrn 33136 tocyccntz 33137 lindssn 33371 lbslsat 33629 0elsiga 34078 prsiga 34095 fiunelcarsg 34281 sibf0 34299 probun 34384 ballotlemfp1 34456 onint1 36415 poimirlem22 37602 poimirlem30 37610 zrdivrng 37913 safesnsupfilb 43380 ntrk0kbimka 44001 clsk3nimkb 44002 ntrclscls00 44028 ntrclskb 44031 ntrneicls11 44052 compne 44410 fzdifsuc2 45225 dvmptfprodlem 45865 fouriercn 46153 prsal 46239 caragenuncllem 46433 carageniuncllem1 46442 caratheodorylem1 46447 gsumdifsndf 47904 |
Copyright terms: Public domain | W3C validator |