Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) (Revised by David Abernethy, 17-Jun-2012.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3892 | . 2 ⊢ (𝐴 ∖ 𝐴) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
2 | dfnul3 4257 | . 2 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-rab 3072 df-dif 3886 df-nul 4254 |
This theorem is referenced by: dif0 4303 difun2 4411 diftpsn3 4732 symdifid 5012 difxp1 6057 difxp2 6058 2oconcl 8295 oev2 8315 fin1a2lem13 10099 ruclem13 15879 strle1 16787 efgi1 19242 frgpuptinv 19292 gsumdifsnd 19477 dprdsn 19554 ablfac1eulem 19590 fctop 22062 cctop 22064 topcld 22094 indiscld 22150 mretopd 22151 restcld 22231 conndisj 22475 csdfil 22953 ufinffr 22988 prdsxmslem2 23591 bcth3 24400 voliunlem3 24621 uhgr0vb 27345 uhgr0 27346 nbgr1vtx 27628 uvtx01vtx 27667 cplgr1v 27700 frgr1v 28536 1vwmgr 28541 difres 30840 imadifxp 30841 difico 31006 fzodif1 31016 symgcom2 31255 cycpmrn 31312 tocyccntz 31313 lindssn 31475 lbslsat 31601 0elsiga 31982 prsiga 31999 fiunelcarsg 32183 sibf0 32201 probun 32286 ballotlemfp1 32358 sltlpss 34014 onint1 34565 poimirlem22 35726 poimirlem30 35734 zrdivrng 36038 ntrk0kbimka 41538 clsk3nimkb 41539 ntrclscls00 41565 ntrclskb 41568 ntrneicls11 41589 compne 41948 fzdifsuc2 42739 dvmptfprodlem 43375 fouriercn 43663 prsal 43749 caragenuncllem 43940 carageniuncllem1 43949 caratheodorylem1 43954 gsumdifsndf 45263 |
Copyright terms: Public domain | W3C validator |