|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > distel | Structured version Visualization version GIF version | ||
| Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5442 and elirrv 9636.) (Contributed by Scott Fenton, 15-Dec-2010.) | 
| Ref | Expression | 
|---|---|
| distel | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | el 5442 | . . 3 ⊢ ∃𝑧 𝑥 ∈ 𝑧 | |
| 2 | df-ex 1780 | . . . 4 ⊢ (∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧) | |
| 3 | nfnae 2439 | . . . . . 6 ⊢ Ⅎ𝑦 ¬ ∀𝑦 𝑦 = 𝑥 | |
| 4 | dveel1 2466 | . . . . . . . 8 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝑧 → ∀𝑦 𝑥 ∈ 𝑧)) | |
| 5 | 3, 4 | nf5d 2284 | . . . . . . 7 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 ∈ 𝑧) | 
| 6 | 5 | nfnd 1858 | . . . . . 6 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥 ∈ 𝑧) | 
| 7 | elequ2 2123 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) | |
| 8 | 7 | notbid 318 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦)) | 
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦))) | 
| 10 | 3, 6, 9 | cbvald 2412 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) | 
| 11 | 10 | notbid 318 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) | 
| 12 | 2, 11 | bitrid 283 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) | 
| 13 | 1, 12 | mpbii 233 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | 
| 14 | elirrv 9636 | . . . . 5 ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 15 | elequ1 2115 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
| 16 | 14, 15 | mtbii 326 | . . . 4 ⊢ (𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝑦) | 
| 17 | 16 | alimi 1811 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥 ∈ 𝑦) | 
| 18 | 17 | con3i 154 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥) | 
| 19 | 13, 18 | impbii 209 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 ax-sep 5296 ax-pr 5432 ax-reg 9632 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-v 3482 df-un 3956 df-sn 4627 df-pr 4629 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |