Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  distel Structured version   Visualization version   GIF version

Theorem distel 32951
 Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5267 and elirrv 9054.) (Contributed by Scott Fenton, 15-Dec-2010.)
Assertion
Ref Expression
distel (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)

Proof of Theorem distel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 5267 . . 3 𝑧 𝑥𝑧
2 df-ex 1774 . . . 4 (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥𝑧)
3 nfnae 2453 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 dveel1 2481 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥𝑧 → ∀𝑦 𝑥𝑧))
53, 4nf5d 2286 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥𝑧)
65nfnd 1851 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥𝑧)
7 elequ2 2122 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
87notbid 319 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦))
98a1i 11 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦)))
103, 6, 9cbvald 2424 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥𝑧 ↔ ∀𝑦 ¬ 𝑥𝑦))
1110notbid 319 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
122, 11syl5bb 284 . . 3 (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
131, 12mpbii 234 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥𝑦)
14 elirrv 9054 . . . . 5 ¬ 𝑦𝑦
15 elequ1 2114 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑦𝑥𝑦))
1614, 15mtbii 327 . . . 4 (𝑦 = 𝑥 → ¬ 𝑥𝑦)
1716alimi 1805 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥𝑦)
1817con3i 157 . 2 (¬ ∀𝑦 ¬ 𝑥𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1913, 18impbii 210 1 (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207  ∀wal 1528  ∃wex 1773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-reg 9050 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-v 3502  df-dif 3943  df-un 3945  df-nul 4296  df-sn 4565  df-pr 4567 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator