![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > distel | Structured version Visualization version GIF version |
Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5399 and elirrv 9539.) (Contributed by Scott Fenton, 15-Dec-2010.) |
Ref | Expression |
---|---|
distel | ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el 5399 | . . 3 ⊢ ∃𝑧 𝑥 ∈ 𝑧 | |
2 | df-ex 1783 | . . . 4 ⊢ (∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧) | |
3 | nfnae 2433 | . . . . . 6 ⊢ Ⅎ𝑦 ¬ ∀𝑦 𝑦 = 𝑥 | |
4 | dveel1 2460 | . . . . . . . 8 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝑧 → ∀𝑦 𝑥 ∈ 𝑧)) | |
5 | 3, 4 | nf5d 2281 | . . . . . . 7 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 ∈ 𝑧) |
6 | 5 | nfnd 1862 | . . . . . 6 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥 ∈ 𝑧) |
7 | elequ2 2122 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) | |
8 | 7 | notbid 318 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦)) |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦))) |
10 | 3, 6, 9 | cbvald 2406 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
11 | 10 | notbid 318 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
12 | 2, 11 | bitrid 283 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
13 | 1, 12 | mpbii 232 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
14 | elirrv 9539 | . . . . 5 ⊢ ¬ 𝑦 ∈ 𝑦 | |
15 | elequ1 2114 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
16 | 14, 15 | mtbii 326 | . . . 4 ⊢ (𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝑦) |
17 | 16 | alimi 1814 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
18 | 17 | con3i 154 | . 2 ⊢ (¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥) |
19 | 13, 18 | impbii 208 | 1 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-13 2371 ax-ext 2708 ax-sep 5261 ax-pr 5389 ax-reg 9535 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-v 3450 df-un 3920 df-sn 4592 df-pr 4594 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |