Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  distel Structured version   Visualization version   GIF version

Theorem distel 33343
Description: Distinctors in terms of membership. (NOTE: this only works with relations where we can prove el 5233 and elirrv 9126.) (Contributed by Scott Fenton, 15-Dec-2010.)
Assertion
Ref Expression
distel (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)

Proof of Theorem distel
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 el 5233 . . 3 𝑧 𝑥𝑧
2 df-ex 1787 . . . 4 (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥𝑧)
3 nfnae 2433 . . . . . 6 𝑦 ¬ ∀𝑦 𝑦 = 𝑥
4 dveel1 2460 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥𝑧 → ∀𝑦 𝑥𝑧))
53, 4nf5d 2287 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥𝑧)
65nfnd 1864 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥𝑧)
7 elequ2 2128 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
87notbid 321 . . . . . . 7 (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦))
98a1i 11 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥𝑧 ↔ ¬ 𝑥𝑦)))
103, 6, 9cbvald 2406 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥𝑧 ↔ ∀𝑦 ¬ 𝑥𝑦))
1110notbid 321 . . . 4 (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
122, 11syl5bb 286 . . 3 (¬ ∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦))
131, 12mpbii 236 . 2 (¬ ∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥𝑦)
14 elirrv 9126 . . . . 5 ¬ 𝑦𝑦
15 elequ1 2120 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑦𝑥𝑦))
1614, 15mtbii 329 . . . 4 (𝑦 = 𝑥 → ¬ 𝑥𝑦)
1716alimi 1818 . . 3 (∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥𝑦)
1817con3i 157 . 2 (¬ ∀𝑦 ¬ 𝑥𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1913, 18impbii 212 1 (¬ ∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wal 1540  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-13 2371  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-reg 9122
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-v 3399  df-dif 3844  df-un 3846  df-nul 4210  df-sn 4514  df-pr 4516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator