| Step | Hyp | Ref
| Expression |
| 1 | | el 5381 |
. . 3
⊢
∃𝑧 𝑥 ∈ 𝑧 |
| 2 | | df-ex 1780 |
. . . 4
⊢
(∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧) |
| 3 | | nfnae 2432 |
. . . . . 6
⊢
Ⅎ𝑦 ¬
∀𝑦 𝑦 = 𝑥 |
| 4 | | dveel1 2459 |
. . . . . . . 8
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝑧 → ∀𝑦 𝑥 ∈ 𝑧)) |
| 5 | 3, 4 | nf5d 2284 |
. . . . . . 7
⊢ (¬
∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 𝑥 ∈ 𝑧) |
| 6 | 5 | nfnd 1858 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑥 → Ⅎ𝑦 ¬ 𝑥 ∈ 𝑧) |
| 7 | | elequ2 2124 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) |
| 8 | 7 | notbid 318 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦)) |
| 9 | 8 | a1i 11 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (𝑧 = 𝑦 → (¬ 𝑥 ∈ 𝑧 ↔ ¬ 𝑥 ∈ 𝑦))) |
| 10 | 3, 6, 9 | cbvald 2405 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
| 11 | 10 | notbid 318 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑧 ¬ 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
| 12 | 2, 11 | bitrid 283 |
. . 3
⊢ (¬
∀𝑦 𝑦 = 𝑥 → (∃𝑧 𝑥 ∈ 𝑧 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦)) |
| 13 | 1, 12 | mpbii 233 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
| 14 | | elirrv 9489 |
. . . . 5
⊢ ¬
𝑦 ∈ 𝑦 |
| 15 | | elequ1 2116 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 16 | 14, 15 | mtbii 326 |
. . . 4
⊢ (𝑦 = 𝑥 → ¬ 𝑥 ∈ 𝑦) |
| 17 | 16 | alimi 1811 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑦 ¬ 𝑥 ∈ 𝑦) |
| 18 | 17 | con3i 154 |
. 2
⊢ (¬
∀𝑦 ¬ 𝑥 ∈ 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥) |
| 19 | 13, 18 | impbii 209 |
1
⊢ (¬
∀𝑦 𝑦 = 𝑥 ↔ ¬ ∀𝑦 ¬ 𝑥 ∈ 𝑦) |