| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvelimdf | Structured version Visualization version GIF version | ||
| Description: Deduction form of dvelimf 2451. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvelimdf.1 | ⊢ Ⅎ𝑥𝜑 |
| dvelimdf.2 | ⊢ Ⅎ𝑧𝜑 |
| dvelimdf.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| dvelimdf.4 | ⊢ (𝜑 → Ⅎ𝑧𝜒) |
| dvelimdf.5 | ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| dvelimdf | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvelimdf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | dvelimdf.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | 1, 2 | nfim1 2198 | . . 3 ⊢ Ⅎ𝑥(𝜑 → 𝜓) |
| 4 | dvelimdf.2 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 5 | dvelimdf.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧𝜒) | |
| 6 | 4, 5 | nfim1 2198 | . . 3 ⊢ Ⅎ𝑧(𝜑 → 𝜒) |
| 7 | dvelimdf.5 | . . . . 5 ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 8 | 7 | com12 32 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 9 | 8 | pm5.74d 273 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 10 | 3, 6, 9 | dvelimf 2451 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝜑 → 𝜒)) |
| 11 | pm5.5 361 | . . 3 ⊢ (𝜑 → ((𝜑 → 𝜒) ↔ 𝜒)) | |
| 12 | 1, 11 | nfbidf 2223 | . 2 ⊢ (𝜑 → (Ⅎ𝑥(𝜑 → 𝜒) ↔ Ⅎ𝑥𝜒)) |
| 13 | 10, 12 | imbitrid 244 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: nfsb4t 2502 dvelimdc 2922 |
| Copyright terms: Public domain | W3C validator |