| Step | Hyp | Ref
| Expression |
| 1 | | equequ2 2025 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 2 | 1 | bibi2d 342 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
| 3 | 2 | albidv 1920 |
. . . 4
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 4 | 3 | sps 2185 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 5 | 4 | drex1 2446 |
. 2
⊢
(∀𝑦 𝑦 = 𝑧 → (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 6 | | hbnae 2437 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ∀𝑦 ¬ ∀𝑦 𝑦 = 𝑧) |
| 7 | | hbnae 2437 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧) |
| 8 | 6, 7 | alrimih 1824 |
. . . . 5
⊢ (¬
∀𝑦 𝑦 = 𝑧 → ∀𝑦∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧) |
| 9 | | ax-5 1910 |
. . . . . . . 8
⊢ (¬
∀𝑥(𝜑 ↔ 𝑥 = 𝑤) → ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)) |
| 10 | | equequ2 2025 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑦)) |
| 11 | 10 | bibi2d 342 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ (𝜑 ↔ 𝑥 = 𝑦))) |
| 12 | 11 | albidv 1920 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 13 | 12 | notbid 318 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 14 | 9, 13 | dvelim 2456 |
. . . . . . 7
⊢ (¬
∀𝑧 𝑧 = 𝑦 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 15 | 14 | naecoms 2434 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 16 | | ax-5 1910 |
. . . . . . 7
⊢ (¬
∀𝑥(𝜑 ↔ 𝑥 = 𝑤) → ∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤)) |
| 17 | | equequ2 2025 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑥 = 𝑤 ↔ 𝑥 = 𝑧)) |
| 18 | 17 | bibi2d 342 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → ((𝜑 ↔ 𝑥 = 𝑤) ↔ (𝜑 ↔ 𝑥 = 𝑧))) |
| 19 | 18 | albidv 1920 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 20 | 19 | notbid 318 |
. . . . . . 7
⊢ (𝑤 = 𝑧 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑤) ↔ ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 21 | 16, 20 | dvelim 2456 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 22 | 3 | notbid 318 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (𝑦 = 𝑧 → (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)))) |
| 24 | 15, 21, 23 | cbv2h 2411 |
. . . . 5
⊢
(∀𝑦∀𝑧 ¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 25 | 8, 24 | syl 17 |
. . . 4
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 26 | 25 | notbid 318 |
. . 3
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ¬ ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 27 | | df-ex 1780 |
. . 3
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ¬ ∀𝑦 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 28 | | df-ex 1780 |
. . 3
⊢
(∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |
| 29 | 26, 27, 28 | 3bitr4g 314 |
. 2
⊢ (¬
∀𝑦 𝑦 = 𝑧 → (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧))) |
| 30 | 5, 29 | pm2.61i 182 |
1
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) |