![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2a | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2387. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
Ref | Expression |
---|---|
rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2853 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | dvelimv 2388 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) |
3 | rgen2a.1 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
4 | 3 | ex 405 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
5 | 4 | alimi 1774 | . . . . 5 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
6 | 2, 5 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
7 | eleq1 2853 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
8 | 7 | biimpd 221 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴)) |
9 | 8, 4 | syli 39 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
10 | 9 | alimi 1774 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
11 | 6, 10 | pm2.61d2 174 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
12 | df-ral 3093 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
13 | 11, 12 | sylibr 226 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
14 | 13 | rgen 3098 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∀wal 1505 ∈ wcel 2050 ∀wral 3088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-cleq 2771 df-clel 2846 df-ral 3093 |
This theorem is referenced by: isoid 6907 f1owe 6931 epweon 7315 fnwelem 7632 oawordeulem 7983 ecopover 8203 unfilem2 8580 dffi2 8684 inficl 8686 fipwuni 8687 fisn 8688 dffi3 8692 cantnfvalf 8924 r111 9000 alephf1 9307 alephiso 9320 dfac5lem4 9348 kmlem9 9380 ackbij1lem17 9458 fin1a2lem2 9623 fin1a2lem4 9625 axcc2lem 9658 nqereu 10151 addpqf 10166 mulpqf 10168 genpdm 10224 axaddf 10367 axmulf 10368 subf 10690 mulnzcnopr 11089 negiso 11424 cnref1o 12202 xaddf 12437 xmulf 12484 ioof 12654 om2uzf1oi 13139 om2uzisoi 13140 wwlktovf1 14185 reeff1 15336 divalglem9 15615 bitsf1 15658 gcdf 15724 eucalgf 15786 qredeu 15861 1arith 16122 vdwapf 16167 catideu 16807 sscres 16954 fpwipodrs 17635 letsr 17698 mgmidmo 17730 frmdplusg 17863 nmznsg 18110 efgred 18637 isabli 18683 brric 19225 xrsmgm 20285 xrs1cmn 20290 xrge0subm 20291 xrsds 20293 cnsubmlem 20298 cnsubrglem 20300 nn0srg 20320 rge0srg 20321 rzgrp 20472 fibas 21292 fctop 21319 cctop 21321 iccordt 21529 fsubbas 22182 zfbas 22211 ismeti 22641 dscmet 22888 qtopbaslem 23073 tgqioo 23114 xrsxmet 23123 xrsdsre 23124 retopconn 23143 iccconn 23144 iimulcn 23248 icopnfhmeo 23253 iccpnfhmeo 23255 xrhmeo 23256 iundisj2 23856 reefiso 24742 recosf1o 24823 2lgslem1b 25673 tgjustf 25964 ercgrg 26008 2wspmdisj 27874 isabloi 28108 cncph 28376 hvsubf 28574 hhip 28736 hhph 28737 helch 28802 hsn0elch 28807 hhssabloilem 28820 hhshsslem2 28827 shscli 28878 shintcli 28890 pjmf1 29277 idunop 29539 idhmop 29543 0hmop 29544 adj0 29555 lnopunii 29573 lnophmi 29579 riesz4i 29624 cnlnadjlem9 29636 adjcoi 29661 bra11 29669 pjhmopi 29707 iundisj2f 30109 iundisj2fi 30272 xrstos 30398 xrge0omnd 30430 reofld 30592 xrge0slmod 30596 iistmd 30789 cnre2csqima 30798 mndpluscn 30813 raddcn 30816 xrge0iifiso 30822 xrge0iifmhm 30826 xrge0pluscn 30827 br2base 31172 sxbrsiga 31193 signswmnd 31473 indispconn 32066 ioosconn 32079 soseq 32617 f1omptsnlem 34059 isbasisrelowl 34081 poimirlem27 34360 exidu1 34576 rngoideu 34623 isomliN 35820 idlaut 36677 resubf 38644 mzpclall 38719 kelac2lem 39060 clsk1indlem3 39756 icof 40908 sprsymrelf1 43027 prmdvdsfmtnof1 43118 uspgrsprf1 43391 plusfreseq 43408 nnsgrpmgm 43452 nnsgrp 43453 2zrngamgm 43575 2zrngmmgm 43582 rrx2xpref1o 44074 rrx2plordisom 44079 |
Copyright terms: Public domain | W3C validator |