Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen2a | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification. Note that 𝑥 and 𝑦 are not required to be disjoint. This proof illustrates the use of dvelim 2451. This theorem relies on the full set of axioms up to ax-ext 2709 and it should no longer be used. Usage of rgen2 3126 is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 1-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rgen2a.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) |
Ref | Expression |
---|---|
rgen2a | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
2 | 1 | dvelimv 2452 | . . . . 5 ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (𝑥 ∈ 𝐴 → ∀𝑦 𝑥 ∈ 𝐴)) |
3 | rgen2a.1 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝜑) | |
4 | 3 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝜑)) |
5 | 4 | alimi 1815 | . . . . 5 ⊢ (∀𝑦 𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
6 | 2, 5 | syl6com 37 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (¬ ∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑))) |
7 | eleq1 2826 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
8 | 7 | biimpd 228 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝑥 ∈ 𝐴)) |
9 | 8, 4 | syli 39 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐴 → 𝜑)) |
10 | 9 | alimi 1815 | . . . 4 ⊢ (∀𝑦 𝑦 = 𝑥 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
11 | 6, 10 | pm2.61d2 181 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) |
12 | df-ral 3068 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜑)) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐴 𝜑) |
14 | 13 | rgen 3073 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-ral 3068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |