![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALTVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssiALT 40587. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALTVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3846 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
2 | idn1 40333 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | idn2 40372 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ {𝐴} ) | |
4 | velsn 4457 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | 3, 4 | e2bi 40391 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 = 𝐴 ) |
6 | eleq1a 2861 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
7 | 2, 5, 6 | e12 40483 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ 𝐵 ) |
8 | 7 | in2 40364 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
9 | 8 | gen11 40375 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
10 | biimpr 212 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) → {𝐴} ⊆ 𝐵)) | |
11 | 1, 9, 10 | e01 40450 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
12 | 11 | in1 40330 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 = wceq 1507 ∈ wcel 2050 ⊆ wss 3829 {csn 4441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-v 3417 df-in 3836 df-ss 3843 df-sn 4442 df-vd1 40329 df-vd2 40337 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |