Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snssiALTVD Structured version   Visualization version   GIF version

Theorem snssiALTVD 42400
Description: Virtual deduction proof of snssiALT 42401. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssiALTVD (𝐴𝐵 → {𝐴} ⊆ 𝐵)

Proof of Theorem snssiALTVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3911 . . 3 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
2 idn1 42147 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
3 idn2 42186 . . . . . . 7 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥 ∈ {𝐴}   )
4 velsn 4582 . . . . . . 7 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
53, 4e2bi 42205 . . . . . 6 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥 = 𝐴   )
6 eleq1a 2835 . . . . . 6 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
72, 5, 6e12 42297 . . . . 5 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥𝐵   )
87in2 42178 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ {𝐴} → 𝑥𝐵)   )
98gen11 42189 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵)   )
10 biimpr 219 . . 3 (({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵)) → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) → {𝐴} ⊆ 𝐵))
111, 9, 10e01 42264 . 2 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
1211in1 42144 1 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2109  wss 3891  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-in 3898  df-ss 3908  df-sn 4567  df-vd1 42143  df-vd2 42151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator