![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALTVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssiALT 43671. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALTVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3968 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
2 | idn1 43417 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | idn2 43456 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ {𝐴} ) | |
4 | velsn 4644 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | 3, 4 | e2bi 43475 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 = 𝐴 ) |
6 | eleq1a 2828 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
7 | 2, 5, 6 | e12 43567 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ 𝐵 ) |
8 | 7 | in2 43448 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
9 | 8 | gen11 43459 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
10 | biimpr 219 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) → {𝐴} ⊆ 𝐵)) | |
11 | 1, 9, 10 | e01 43534 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
12 | 11 | in1 43414 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-sn 4629 df-vd1 43413 df-vd2 43421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |