Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtr Structured version   Visualization version   GIF version

Theorem sspwtr 39817
Description: Virtual deduction proof of the right-to-left implication of dftr4 4950. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 39817 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtr (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)

Proof of Theorem sspwtr
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4947 . . 3 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴))
2 idn1 39560 . . . . . . . 8 (   𝐴 ⊆ 𝒫 𝐴   ▶   𝐴 ⊆ 𝒫 𝐴   )
3 idn2 39608 . . . . . . . . 9 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   (𝑧𝑦𝑦𝐴)   )
4 simpr 478 . . . . . . . . 9 ((𝑧𝑦𝑦𝐴) → 𝑦𝐴)
53, 4e2 39626 . . . . . . . 8 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦𝐴   )
6 ssel 3792 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝐴 → (𝑦𝐴𝑦 ∈ 𝒫 𝐴))
72, 5, 6e12 39720 . . . . . . 7 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦 ∈ 𝒫 𝐴   )
8 elpwi 4359 . . . . . . 7 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
97, 8e2 39626 . . . . . 6 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑦𝐴   )
10 simpl 475 . . . . . . 7 ((𝑧𝑦𝑦𝐴) → 𝑧𝑦)
113, 10e2 39626 . . . . . 6 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑧𝑦   )
12 ssel 3792 . . . . . 6 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
139, 11, 12e22 39666 . . . . 5 (   𝐴 ⊆ 𝒫 𝐴   ,   (𝑧𝑦𝑦𝐴)   ▶   𝑧𝐴   )
1413in2 39600 . . . 4 (   𝐴 ⊆ 𝒫 𝐴   ▶   ((𝑧𝑦𝑦𝐴) → 𝑧𝐴)   )
1514gen12 39613 . . 3 (   𝐴 ⊆ 𝒫 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)   )
16 biimpr 212 . . 3 ((Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦𝐴) → 𝑧𝐴) → Tr 𝐴))
171, 15, 16e01 39686 . 2 (   𝐴 ⊆ 𝒫 𝐴   ▶   Tr 𝐴   )
1817in1 39557 1 (𝐴 ⊆ 𝒫 𝐴 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wal 1651  wcel 2157  wss 3769  𝒫 cpw 4349  Tr wtr 4945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-v 3387  df-in 3776  df-ss 3783  df-pw 4351  df-uni 4629  df-tr 4946  df-vd1 39556  df-vd2 39564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator