Proof of Theorem ax6e2eqVD
Step | Hyp | Ref
| Expression |
1 | | idn1 42083 |
. . . . . 6
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∀𝑥 𝑥 = 𝑦 ) |
2 | | ax6ev 1974 |
. . . . . . . . . 10
⊢
∃𝑥 𝑥 = 𝑢 |
3 | | hba1 2293 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑥 𝑥 = 𝑦) |
4 | | sp 2178 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) |
5 | 3, 4 | impbii 208 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑥 𝑥 = 𝑦) |
6 | | idn2 42122 |
. . . . . . . . . . . . . . . . 17
⊢ ( ∀𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑥 = 𝑢 ) |
7 | | sp 2178 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) |
8 | 1, 7 | e1a 42136 |
. . . . . . . . . . . . . . . . . 18
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ 𝑥 = 𝑦 ) |
9 | | ax7 2020 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑢 → 𝑦 = 𝑢)) |
10 | 9 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑢 → (𝑥 = 𝑦 → 𝑦 = 𝑢)) |
11 | 6, 8, 10 | e21 42239 |
. . . . . . . . . . . . . . . . 17
⊢ ( ∀𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ 𝑦 = 𝑢 ) |
12 | | pm3.2 469 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑢 → (𝑦 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
13 | 6, 11, 12 | e22 42180 |
. . . . . . . . . . . . . . . 16
⊢ ( ∀𝑥 𝑥 = 𝑦 , 𝑥 = 𝑢 ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
14 | 13 | in2 42114 |
. . . . . . . . . . . . . . 15
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) ) |
15 | 14 | in1 42080 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
16 | 15 | alimi 1815 |
. . . . . . . . . . . . 13
⊢
(∀𝑥∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
17 | 5, 16 | sylbi 216 |
. . . . . . . . . . . 12
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
18 | 1, 17 | e1a 42136 |
. . . . . . . . . . 11
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) ) |
19 | | exim 1837 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) → (∃𝑥 𝑥 = 𝑢 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
20 | 18, 19 | e1a 42136 |
. . . . . . . . . 10
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ (∃𝑥 𝑥 = 𝑢 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) ) |
21 | | pm2.27 42 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 = 𝑢 → ((∃𝑥 𝑥 = 𝑢 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
22 | 2, 20, 21 | e01 42200 |
. . . . . . . . 9
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
23 | 22 | in1 42080 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
24 | 23 | axc4i 2320 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
25 | 1, 24 | e1a 42136 |
. . . . . 6
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
26 | | axc11 2430 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) |
27 | 1, 25, 26 | e11 42197 |
. . . . 5
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
28 | | 19.2 1981 |
. . . . 5
⊢
(∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
29 | 27, 28 | e1a 42136 |
. . . 4
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
30 | | excomim 2165 |
. . . 4
⊢
(∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) |
31 | 29, 30 | e1a 42136 |
. . 3
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
32 | | idn1 42083 |
. . . . . . . . . . 11
⊢ ( 𝑢 = 𝑣 ▶ 𝑢 = 𝑣 ) |
33 | | idn2 42122 |
. . . . . . . . . . . 12
⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) |
34 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → 𝑦 = 𝑢) |
35 | 33, 34 | e2 42140 |
. . . . . . . . . . 11
⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑢 ) |
36 | | equtrr 2026 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → (𝑦 = 𝑢 → 𝑦 = 𝑣)) |
37 | 32, 35, 36 | e12 42233 |
. . . . . . . . . 10
⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑦 = 𝑣 ) |
38 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → 𝑥 = 𝑢) |
39 | 33, 38 | e2 42140 |
. . . . . . . . . 10
⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ 𝑥 = 𝑢 ) |
40 | | pm3.21 471 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
41 | 37, 39, 40 | e22 42180 |
. . . . . . . . 9
⊢ ( 𝑢 = 𝑣 , (𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ▶ (𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ) |
42 | 41 | in2 42114 |
. . . . . . . 8
⊢ ( 𝑢 = 𝑣 ▶ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
43 | 42 | gen11 42125 |
. . . . . . 7
⊢ ( 𝑢 = 𝑣 ▶ ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
44 | | exim 1837 |
. . . . . . 7
⊢
(∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
45 | 43, 44 | e1a 42136 |
. . . . . 6
⊢ ( 𝑢 = 𝑣 ▶ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
46 | 45 | gen11 42125 |
. . . . 5
⊢ ( 𝑢 = 𝑣 ▶ ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
47 | | exim 1837 |
. . . . 5
⊢
(∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
48 | 46, 47 | e1a 42136 |
. . . 4
⊢ ( 𝑢 = 𝑣 ▶ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
49 | 48 | in1 42080 |
. . 3
⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |
50 | | pm2.04 90 |
. . . 4
⊢ ((𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))) |
51 | 50 | com12 32 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ((𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))) |
52 | 31, 49, 51 | e10 42203 |
. 2
⊢ ( ∀𝑥 𝑥 = 𝑦 ▶ (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) ) |
53 | 52 | in1 42080 |
1
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) |