Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sstrALT2VD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of sstrALT2 42455. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sstrALT2VD | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3907 | . . 3 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | idn1 42194 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ) | |
3 | simpr 485 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | e1a 42247 | . . . . . 6 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐵 ⊆ 𝐶 ) |
5 | simpl 483 | . . . . . . . 8 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐵) | |
6 | 2, 5 | e1a 42247 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐴 ⊆ 𝐵 ) |
7 | idn2 42233 | . . . . . . 7 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 ) | |
8 | ssel2 3916 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
9 | 6, 7, 8 | e12an 42345 | . . . . . 6 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
10 | ssel2 3916 | . . . . . 6 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐶) | |
11 | 4, 9, 10 | e12an 42345 | . . . . 5 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) , 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐶 ) |
12 | 11 | in2 42225 | . . . 4 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ) |
13 | 12 | gen11 42236 | . . 3 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ) |
14 | biimpr 219 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → 𝐴 ⊆ 𝐶)) | |
15 | 1, 13, 14 | e01 42311 | . 2 ⊢ ( (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) ▶ 𝐴 ⊆ 𝐶 ) |
16 | 15 | in1 42191 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-vd1 42190 df-vd2 42198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |