Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwtrVD Structured version   Visualization version   GIF version

Theorem pwtrVD 44813
Description: Virtual deduction proof of pwtr 5412; see pwtrrVD 44814 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwtrVD (Tr 𝐴 → Tr 𝒫 𝐴)

Proof of Theorem pwtrVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5216 . . 3 (Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴))
2 idn1 44564 . . . . . . 7 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn2 44603 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   )
4 simpr 484 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑦 ∈ 𝒫 𝐴)
53, 4e2 44621 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦 ∈ 𝒫 𝐴   )
6 elpwi 4570 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
75, 6e2 44621 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦𝐴   )
8 simpl 482 . . . . . . . . 9 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧𝑦)
93, 8e2 44621 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝑦   )
10 ssel 3940 . . . . . . . 8 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
117, 9, 10e22 44661 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
12 trss 5225 . . . . . . 7 (Tr 𝐴 → (𝑧𝐴𝑧𝐴))
132, 11, 12e12 44713 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
14 vex 3451 . . . . . . 7 𝑧 ∈ V
1514elpw 4567 . . . . . 6 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
1613, 15e2bir 44623 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧 ∈ 𝒫 𝐴   )
1716in2 44595 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
1817gen12 44608 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
19 biimpr 220 . . 3 ((Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) → Tr 𝒫 𝐴))
201, 18, 19e01 44681 . 2 (   Tr 𝐴   ▶   Tr 𝒫 𝐴   )
2120in1 44561 1 (Tr 𝐴 → Tr 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  wss 3914  𝒫 cpw 4563  Tr wtr 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3449  df-ss 3931  df-pw 4565  df-uni 4872  df-tr 5215  df-vd1 44560  df-vd2 44568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator