Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwtrVD Structured version   Visualization version   GIF version

Theorem pwtrVD 42412
Description: Virtual deduction proof of pwtr 5371; see pwtrrVD 42413 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwtrVD (Tr 𝐴 → Tr 𝒫 𝐴)

Proof of Theorem pwtrVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5198 . . 3 (Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴))
2 idn1 42162 . . . . . . 7 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn2 42201 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   )
4 simpr 485 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑦 ∈ 𝒫 𝐴)
53, 4e2 42219 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦 ∈ 𝒫 𝐴   )
6 elpwi 4548 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
75, 6e2 42219 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦𝐴   )
8 simpl 483 . . . . . . . . 9 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧𝑦)
93, 8e2 42219 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝑦   )
10 ssel 3919 . . . . . . . 8 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
117, 9, 10e22 42259 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
12 trss 5205 . . . . . . 7 (Tr 𝐴 → (𝑧𝐴𝑧𝐴))
132, 11, 12e12 42312 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
14 vex 3435 . . . . . . 7 𝑧 ∈ V
1514elpw 4543 . . . . . 6 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
1613, 15e2bir 42221 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧 ∈ 𝒫 𝐴   )
1716in2 42193 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
1817gen12 42206 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
19 biimpr 219 . . 3 ((Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) → Tr 𝒫 𝐴))
201, 18, 19e01 42279 . 2 (   Tr 𝐴   ▶   Tr 𝒫 𝐴   )
2120in1 42159 1 (Tr 𝐴 → Tr 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540  wcel 2110  wss 3892  𝒫 cpw 4539  Tr wtr 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-v 3433  df-in 3899  df-ss 3909  df-pw 4541  df-uni 4846  df-tr 5197  df-vd1 42158  df-vd2 42166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator