Step | Hyp | Ref
| Expression |
1 | | dftr2 5189 |
. . 3
⊢ (Tr
𝒫 𝐴 ↔
∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)) |
2 | | idn1 42083 |
. . . . . . 7
⊢ ( Tr 𝐴 ▶ Tr 𝐴 ) |
3 | | idn2 42122 |
. . . . . . . . . 10
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ) |
4 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑦 ∈ 𝒫 𝐴) |
5 | 3, 4 | e2 42140 |
. . . . . . . . 9
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑦 ∈ 𝒫 𝐴 ) |
6 | | elpwi 4539 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) |
7 | 5, 6 | e2 42140 |
. . . . . . . 8
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑦 ⊆ 𝐴 ) |
8 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝑦) |
9 | 3, 8 | e2 42140 |
. . . . . . . 8
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑧 ∈ 𝑦 ) |
10 | | ssel 3910 |
. . . . . . . 8
⊢ (𝑦 ⊆ 𝐴 → (𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴)) |
11 | 7, 9, 10 | e22 42180 |
. . . . . . 7
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑧 ∈ 𝐴 ) |
12 | | trss 5196 |
. . . . . . 7
⊢ (Tr 𝐴 → (𝑧 ∈ 𝐴 → 𝑧 ⊆ 𝐴)) |
13 | 2, 11, 12 | e12 42233 |
. . . . . 6
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑧 ⊆ 𝐴 ) |
14 | | vex 3426 |
. . . . . . 7
⊢ 𝑧 ∈ V |
15 | 14 | elpw 4534 |
. . . . . 6
⊢ (𝑧 ∈ 𝒫 𝐴 ↔ 𝑧 ⊆ 𝐴) |
16 | 13, 15 | e2bir 42142 |
. . . . 5
⊢ ( Tr 𝐴 , (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) ▶ 𝑧 ∈ 𝒫 𝐴 ) |
17 | 16 | in2 42114 |
. . . 4
⊢ ( Tr 𝐴 ▶ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) ) |
18 | 17 | gen12 42127 |
. . 3
⊢ ( Tr 𝐴 ▶ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) ) |
19 | | biimpr 219 |
. . 3
⊢ ((Tr
𝒫 𝐴 ↔
∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)) → (∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) → Tr 𝒫 𝐴)) |
20 | 1, 18, 19 | e01 42200 |
. 2
⊢ ( Tr 𝐴 ▶ Tr
𝒫 𝐴 ) |
21 | 20 | in1 42080 |
1
⊢ (Tr 𝐴 → Tr 𝒫 𝐴) |