Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwtrVD Structured version   Visualization version   GIF version

Theorem pwtrVD 44795
Description: Virtual deduction proof of pwtr 5472; see pwtrrVD 44796 for the converse. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwtrVD (Tr 𝐴 → Tr 𝒫 𝐴)

Proof of Theorem pwtrVD
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 5285 . . 3 (Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴))
2 idn1 44545 . . . . . . 7 (   Tr 𝐴   ▶   Tr 𝐴   )
3 idn2 44584 . . . . . . . . . 10 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   )
4 simpr 484 . . . . . . . . . 10 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑦 ∈ 𝒫 𝐴)
53, 4e2 44602 . . . . . . . . 9 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦 ∈ 𝒫 𝐴   )
6 elpwi 4629 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
75, 6e2 44602 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑦𝐴   )
8 simpl 482 . . . . . . . . 9 ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧𝑦)
93, 8e2 44602 . . . . . . . 8 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝑦   )
10 ssel 4002 . . . . . . . 8 (𝑦𝐴 → (𝑧𝑦𝑧𝐴))
117, 9, 10e22 44642 . . . . . . 7 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
12 trss 5294 . . . . . . 7 (Tr 𝐴 → (𝑧𝐴𝑧𝐴))
132, 11, 12e12 44695 . . . . . 6 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧𝐴   )
14 vex 3492 . . . . . . 7 𝑧 ∈ V
1514elpw 4626 . . . . . 6 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
1613, 15e2bir 44604 . . . . 5 (   Tr 𝐴   ,   (𝑧𝑦𝑦 ∈ 𝒫 𝐴)   ▶   𝑧 ∈ 𝒫 𝐴   )
1716in2 44576 . . . 4 (   Tr 𝐴   ▶   ((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
1817gen12 44589 . . 3 (   Tr 𝐴   ▶   𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)   )
19 biimpr 220 . . 3 ((Tr 𝒫 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴)) → (∀𝑧𝑦((𝑧𝑦𝑦 ∈ 𝒫 𝐴) → 𝑧 ∈ 𝒫 𝐴) → Tr 𝒫 𝐴))
201, 18, 19e01 44662 . 2 (   Tr 𝐴   ▶   Tr 𝒫 𝐴   )
2120in1 44542 1 (Tr 𝐴 → Tr 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wcel 2108  wss 3976  𝒫 cpw 4622  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284  df-vd1 44541  df-vd2 44549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator