| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snelpwrVD | Structured version Visualization version GIF version | ||
| Description: Virtual deduction proof of snelpwi 5447. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snelpwrVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5435 | . . 3 ⊢ {𝐴} ∈ V | |
| 2 | idn1 44599 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
| 3 | snssi 4807 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
| 4 | 2, 3 | e1a 44652 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
| 5 | elpwg 4602 | . . . 4 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 6 | 5 | biimprd 248 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵)) |
| 7 | 1, 4, 6 | e01 44716 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ∈ 𝒫 𝐵 ) |
| 8 | 7 | in1 44596 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 {csn 4625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-pw 4601 df-sn 4626 df-pr 4628 df-vd1 44595 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |