Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Visualization version   GIF version

Theorem snelpwrVD 44922
Description: Virtual deduction proof of snelpwi 5383. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 5372 . . 3 {𝐴} ∈ V
2 idn1 44666 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
3 snssi 4757 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
42, 3e1a 44719 . . 3 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
5 elpwg 4550 . . . 4 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
65biimprd 248 . . 3 ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵))
71, 4, 6e01 44783 . 2 (   𝐴𝐵   ▶   {𝐴} ∈ 𝒫 𝐵   )
87in1 44663 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  wss 3897  𝒫 cpw 4547  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-pw 4549  df-sn 4574  df-pr 4576  df-vd1 44662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator