Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelpwrVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snelpwi 5360. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snelpwrVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . 3 ⊢ {𝐴} ∈ V | |
2 | idn1 42194 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | snssi 4741 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
4 | 2, 3 | e1a 42247 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
5 | elpwg 4536 | . . . 4 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
6 | 5 | biimprd 247 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵)) |
7 | 1, 4, 6 | e01 42311 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ∈ 𝒫 𝐵 ) |
8 | 7 | in1 42191 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-vd1 42190 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |