![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snelpwrVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snelpwi 5102. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snelpwrVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5098 | . . 3 ⊢ {𝐴} ∈ V | |
2 | idn1 39549 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | snssi 4526 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) | |
4 | 2, 3 | e1a 39611 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
5 | elpwg 4356 | . . . 4 ⊢ ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
6 | 5 | biimprd 240 | . . 3 ⊢ ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵)) |
7 | 1, 4, 6 | e01 39675 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ∈ 𝒫 𝐵 ) |
8 | 7 | in1 39546 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3384 ⊆ wss 3768 𝒫 cpw 4348 {csn 4367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pr 5096 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-v 3386 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-nul 4115 df-pw 4350 df-sn 4368 df-pr 4370 df-vd1 39545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |