Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Visualization version   GIF version

Theorem snelpwrVD 44830
Description: Virtual deduction proof of snelpwi 5423. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 5411 . . 3 {𝐴} ∈ V
2 idn1 44574 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
3 snssi 4789 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
42, 3e1a 44627 . . 3 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
5 elpwg 4583 . . . 4 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
65biimprd 248 . . 3 ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵))
71, 4, 6e01 44691 . 2 (   𝐴𝐵   ▶   {𝐴} ∈ 𝒫 𝐵   )
87in1 44571 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-pw 4582  df-sn 4607  df-pr 4609  df-vd1 44570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator