Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Visualization version   GIF version

Theorem snelpwrVD 44829
Description: Virtual deduction proof of snelpwi 5454. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 5442 . . 3 {𝐴} ∈ V
2 idn1 44572 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
3 snssi 4813 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
42, 3e1a 44625 . . 3 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
5 elpwg 4608 . . . 4 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
65biimprd 248 . . 3 ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵))
71, 4, 6e01 44689 . 2 (   𝐴𝐵   ▶   {𝐴} ∈ 𝒫 𝐵   )
87in1 44569 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  wss 3963  𝒫 cpw 4605  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-pw 4607  df-sn 4632  df-pr 4634  df-vd1 44568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator