Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelpwrVD Structured version   Visualization version   GIF version

Theorem snelpwrVD 42340
Description: Virtual deduction proof of snelpwi 5354. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snelpwrVD (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)

Proof of Theorem snelpwrVD
StepHypRef Expression
1 snex 5349 . . 3 {𝐴} ∈ V
2 idn1 42083 . . . 4 (   𝐴𝐵   ▶   𝐴𝐵   )
3 snssi 4738 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
42, 3e1a 42136 . . 3 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
5 elpwg 4533 . . . 4 ({𝐴} ∈ V → ({𝐴} ∈ 𝒫 𝐵 ↔ {𝐴} ⊆ 𝐵))
65biimprd 247 . . 3 ({𝐴} ∈ V → ({𝐴} ⊆ 𝐵 → {𝐴} ∈ 𝒫 𝐵))
71, 4, 6e01 42200 . 2 (   𝐴𝐵   ▶   {𝐴} ∈ 𝒫 𝐵   )
87in1 42080 1 (𝐴𝐵 → {𝐴} ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-vd1 42079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator