Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elabreximdv Structured version   Visualization version   GIF version

Theorem elabreximdv 32530
Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.)
Hypotheses
Ref Expression
elabreximdv.1 (𝐴 = 𝐵 → (𝜒𝜓))
elabreximdv.2 (𝜑𝐴𝑉)
elabreximdv.3 ((𝜑𝑥𝐶) → 𝜓)
Assertion
Ref Expression
elabreximdv ((𝜑𝐴 ∈ {𝑦 ∣ ∃𝑥𝐶 𝑦 = 𝐵}) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem elabreximdv
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 nfv 1914 . 2 𝑥𝜒
3 elabreximdv.1 . 2 (𝐴 = 𝐵 → (𝜒𝜓))
4 elabreximdv.2 . 2 (𝜑𝐴𝑉)
5 elabreximdv.3 . 2 ((𝜑𝑥𝐶) → 𝜓)
61, 2, 3, 4, 5elabreximd 32529 1 ((𝜑𝐴 ∈ {𝑦 ∣ ∃𝑥𝐶 𝑦 = 𝐵}) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator