![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elabreximd | Structured version Visualization version GIF version |
Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016.) |
Ref | Expression |
---|---|
elabreximd.1 | ⊢ Ⅎ𝑥𝜑 |
elabreximd.2 | ⊢ Ⅎ𝑥𝜒 |
elabreximd.3 | ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) |
elabreximd.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elabreximd.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) |
Ref | Expression |
---|---|
elabreximd | ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elabreximd.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | eqeq1 2730 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 2 | rexbidv 3169 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝐶 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐶 𝐴 = 𝐵)) |
4 | 3 | elabg 3664 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐶 𝐴 = 𝐵)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐶 𝐴 = 𝐵)) |
6 | 5 | biimpa 475 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → ∃𝑥 ∈ 𝐶 𝐴 = 𝐵) |
7 | elabreximd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
8 | elabreximd.2 | . . . 4 ⊢ Ⅎ𝑥𝜒 | |
9 | simpr 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
10 | elabreximd.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜓) | |
11 | 10 | adantr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝐴 = 𝐵) → 𝜓) |
12 | elabreximd.3 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝜒 ↔ 𝜓)) | |
13 | 12 | biimpar 476 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝜓) → 𝜒) |
14 | 9, 11, 13 | syl2anc 582 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐶) ∧ 𝐴 = 𝐵) → 𝜒) |
15 | 14 | exp31 418 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝐴 = 𝐵 → 𝜒))) |
16 | 7, 8, 15 | rexlimd 3254 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐶 𝐴 = 𝐵 → 𝜒)) |
17 | 16 | imp 405 | . 2 ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐶 𝐴 = 𝐵) → 𝜒) |
18 | 6, 17 | syldan 589 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵}) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 {cab 2703 ∃wrex 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 |
This theorem is referenced by: elabreximdv 32435 abrexss 32436 iinabrex 32487 disjabrex 32500 disjabrexf 32501 |
Copyright terms: Public domain | W3C validator |