![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexss | Structured version Visualization version GIF version |
Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
Ref | Expression |
---|---|
abrexss.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
abrexss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3277 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | abrexss.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfcri 2885 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
4 | eleq1 2816 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
5 | vex 3475 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → 𝑧 ∈ V) |
7 | rspa 3241 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
8 | 1, 3, 4, 6, 7 | elabreximd 32323 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) → 𝑧 ∈ 𝐶) |
9 | 8 | ex 411 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑧 ∈ 𝐶)) |
10 | 9 | ssrdv 3986 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2704 Ⅎwnfc 2878 ∀wral 3057 ∃wrex 3066 Vcvv 3471 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-v 3473 df-in 3954 df-ss 3964 |
This theorem is referenced by: funimass4f 32440 measvunilem 33836 |
Copyright terms: Public domain | W3C validator |