![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexss | Structured version Visualization version GIF version |
Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
Ref | Expression |
---|---|
abrexss.1 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
abrexss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfra1 3281 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
2 | abrexss.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
3 | 2 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
4 | eleq1 2821 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
5 | vex 3478 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → 𝑧 ∈ V) |
7 | rspa 3245 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
8 | 1, 3, 4, 6, 7 | elabreximd 31742 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) → 𝑧 ∈ 𝐶) |
9 | 8 | ex 413 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑧 ∈ 𝐶)) |
10 | 9 | ssrdv 3988 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cab 2709 Ⅎwnfc 2883 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: funimass4f 31856 measvunilem 33205 |
Copyright terms: Public domain | W3C validator |