Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexss Structured version   Visualization version   GIF version

Theorem abrexss 32542
Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.)
Hypothesis
Ref Expression
abrexss.1 𝑥𝐶
Assertion
Ref Expression
abrexss (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem abrexss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfra1 3290 . . . 4 𝑥𝑥𝐴 𝐵𝐶
2 abrexss.1 . . . . 5 𝑥𝐶
32nfcri 2900 . . . 4 𝑥 𝑧𝐶
4 eleq1 2832 . . . 4 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
5 vex 3492 . . . . 5 𝑧 ∈ V
65a1i 11 . . . 4 (∀𝑥𝐴 𝐵𝐶𝑧 ∈ V)
7 rspa 3254 . . . 4 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
81, 3, 4, 6, 7elabreximd 32540 . . 3 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}) → 𝑧𝐶)
98ex 412 . 2 (∀𝑥𝐴 𝐵𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} → 𝑧𝐶))
109ssrdv 4014 1 (∀𝑥𝐴 𝐵𝐶 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {cab 2717  wnfc 2893  wral 3067  wrex 3076  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993
This theorem is referenced by:  funimass4f  32658  measvunilem  34178
  Copyright terms: Public domain W3C validator