| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexss | Structured version Visualization version GIF version | ||
| Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017.) |
| Ref | Expression |
|---|---|
| abrexss.1 | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| abrexss | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra1 3257 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 2 | abrexss.1 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 3 | 2 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 4 | eleq1 2821 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 5 | vex 3441 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → 𝑧 ∈ V) |
| 7 | rspa 3222 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 8 | 1, 3, 4, 6, 7 | elabreximd 32492 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) → 𝑧 ∈ 𝐶) |
| 9 | 8 | ex 412 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑧 ∈ 𝐶)) |
| 10 | 9 | ssrdv 3936 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 Ⅎwnfc 2880 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 |
| This theorem is referenced by: funimass4f 32621 measvunilem 34246 |
| Copyright terms: Public domain | W3C validator |