![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldifvsn | Structured version Visualization version GIF version |
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
eldifvsn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4789 | . 2 ⊢ (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
2 | elex 3492 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 2 | biantrurd 533 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵))) |
4 | 1, 3 | bitr4id 289 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∖ cdif 3944 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-v 3476 df-dif 3950 df-sn 4628 |
This theorem is referenced by: cnvimadfsn 8153 |
Copyright terms: Public domain | W3C validator |