MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifvsn Structured version   Visualization version   GIF version

Theorem eldifvsn 4730
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
eldifvsn (𝐴𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴𝐵))

Proof of Theorem eldifvsn
StepHypRef Expression
1 eldifsn 4720 . 2 (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
2 elex 3450 . . 3 (𝐴𝑉𝐴 ∈ V)
32biantrurd 533 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵)))
41, 3bitr4id 290 1 (𝐴𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-sn 4562
This theorem is referenced by:  cnvimadfsn  7988
  Copyright terms: Public domain W3C validator