| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifvsn | Structured version Visualization version GIF version | ||
| Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) |
| Ref | Expression |
|---|---|
| eldifvsn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4767 | . 2 ⊢ (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
| 2 | elex 3485 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 3 | 2 | biantrurd 532 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵))) |
| 4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ∖ cdif 3928 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-sn 4607 |
| This theorem is referenced by: cnvimadfsn 8176 |
| Copyright terms: Public domain | W3C validator |