Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldifvsn | Structured version Visualization version GIF version |
Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
eldifvsn | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4720 | . 2 ⊢ (𝐴 ∈ (V ∖ {𝐵}) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
2 | elex 3450 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
3 | 2 | biantrurd 533 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ≠ 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ≠ 𝐵))) |
4 | 1, 3 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ (V ∖ {𝐵}) ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∖ cdif 3884 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-sn 4562 |
This theorem is referenced by: cnvimadfsn 7988 |
Copyright terms: Public domain | W3C validator |