Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raldifsnb | Structured version Visualization version GIF version |
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
raldifsnb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4582 | . . . . . 6 ⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) | |
2 | nnel 3059 | . . . . . 6 ⊢ (¬ 𝑥 ∉ {𝑌} ↔ 𝑥 ∈ {𝑌}) | |
3 | nne 2948 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ 𝑥 = 𝑌) | |
4 | 1, 2, 3 | 3bitr4ri 303 | . . . . 5 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ ¬ 𝑥 ∉ {𝑌}) |
5 | 4 | con4bii 320 | . . . 4 ⊢ (𝑥 ≠ 𝑌 ↔ 𝑥 ∉ {𝑌}) |
6 | 5 | imbi1i 349 | . . 3 ⊢ ((𝑥 ≠ 𝑌 → 𝜑) ↔ (𝑥 ∉ {𝑌} → 𝜑)) |
7 | 6 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑)) |
8 | raldifb 4083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) | |
9 | 7, 8 | bitri 274 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∉ wnel 3050 ∀wral 3065 ∖ cdif 3888 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-nel 3051 df-ral 3070 df-v 3432 df-dif 3894 df-sn 4567 |
This theorem is referenced by: dff14b 7138 isdomn5 40151 |
Copyright terms: Public domain | W3C validator |