MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifsnb Structured version   Visualization version   GIF version

Theorem raldifsnb 4745
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
raldifsnb (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)

Proof of Theorem raldifsnb
StepHypRef Expression
1 velsn 4589 . . . . . 6 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
2 nnel 3042 . . . . . 6 𝑥 ∉ {𝑌} ↔ 𝑥 ∈ {𝑌})
3 nne 2932 . . . . . 6 𝑥𝑌𝑥 = 𝑌)
41, 2, 33bitr4ri 304 . . . . 5 𝑥𝑌 ↔ ¬ 𝑥 ∉ {𝑌})
54con4bii 321 . . . 4 (𝑥𝑌𝑥 ∉ {𝑌})
65imbi1i 349 . . 3 ((𝑥𝑌𝜑) ↔ (𝑥 ∉ {𝑌} → 𝜑))
76ralbii 3078 . 2 (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥𝐴 (𝑥 ∉ {𝑌} → 𝜑))
8 raldifb 4096 . 2 (∀𝑥𝐴 (𝑥 ∉ {𝑌} → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
97, 8bitri 275 1 (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  cdif 3894  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-v 3438  df-dif 3900  df-sn 4574
This theorem is referenced by:  dff14b  7205  isdomn5  20625  safesnsupfilb  43521
  Copyright terms: Public domain W3C validator