![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raldifsnb | Structured version Visualization version GIF version |
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
raldifsnb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4664 | . . . . . 6 ⊢ (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌) | |
2 | nnel 3062 | . . . . . 6 ⊢ (¬ 𝑥 ∉ {𝑌} ↔ 𝑥 ∈ {𝑌}) | |
3 | nne 2950 | . . . . . 6 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ 𝑥 = 𝑌) | |
4 | 1, 2, 3 | 3bitr4ri 304 | . . . . 5 ⊢ (¬ 𝑥 ≠ 𝑌 ↔ ¬ 𝑥 ∉ {𝑌}) |
5 | 4 | con4bii 321 | . . . 4 ⊢ (𝑥 ≠ 𝑌 ↔ 𝑥 ∉ {𝑌}) |
6 | 5 | imbi1i 349 | . . 3 ⊢ ((𝑥 ≠ 𝑌 → 𝜑) ↔ (𝑥 ∉ {𝑌} → 𝜑)) |
7 | 6 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑)) |
8 | raldifb 4172 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ {𝑌} → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) | |
9 | 7, 8 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ≠ 𝑌 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 ∖ cdif 3973 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-ral 3068 df-v 3490 df-dif 3979 df-sn 4649 |
This theorem is referenced by: dff14b 7308 isdomn5 20732 safesnsupfilb 43380 |
Copyright terms: Public domain | W3C validator |