MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifsnb Structured version   Visualization version   GIF version

Theorem raldifsnb 4732
Description: Restricted universal quantification on a class difference with a singleton in terms of an implication. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
raldifsnb (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
Distinct variable group:   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem raldifsnb
StepHypRef Expression
1 velsn 4586 . . . . . 6 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
2 nnel 3135 . . . . . 6 𝑥 ∉ {𝑌} ↔ 𝑥 ∈ {𝑌})
3 nne 3023 . . . . . 6 𝑥𝑌𝑥 = 𝑌)
41, 2, 33bitr4ri 306 . . . . 5 𝑥𝑌 ↔ ¬ 𝑥 ∉ {𝑌})
54con4bii 323 . . . 4 (𝑥𝑌𝑥 ∉ {𝑌})
65imbi1i 352 . . 3 ((𝑥𝑌𝜑) ↔ (𝑥 ∉ {𝑌} → 𝜑))
76ralbii 3168 . 2 (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥𝐴 (𝑥 ∉ {𝑌} → 𝜑))
8 raldifb 4124 . 2 (∀𝑥𝐴 (𝑥 ∉ {𝑌} → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
97, 8bitri 277 1 (∀𝑥𝐴 (𝑥𝑌𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ {𝑌})𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1536  wcel 2113  wne 3019  wnel 3126  wral 3141  cdif 3936  {csn 4570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-v 3499  df-dif 3942  df-sn 4571
This theorem is referenced by:  dff14b  7032
  Copyright terms: Public domain W3C validator