MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsn Structured version   Visualization version   GIF version

Theorem difsn 4800
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4789 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 483 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 nelelne 3041 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
43ancld 551 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
52, 4impbid2 225 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
61, 5bitrid 282 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
76eqrdv 2730 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  cdif 3944  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3950  df-sn 4628
This theorem is referenced by:  difsnb  4808  difsnexi  7744  domdifsn  9050  domunsncan  9068  frfi  9284  infdifsn  9648  dfn2  12481  hashgt23el  14380  clslp  22643  xrge00  32174  lindsadd  36469  lindsenlbs  36471  poimirlem2  36478  poimirlem4  36480  poimirlem6  36482  poimirlem7  36483  poimirlem8  36484  poimirlem19  36495  poimirlem23  36499  supxrmnf2  44129  infxrpnf2  44159  dvmptfprodlem  44646  hoiprodp1  45290
  Copyright terms: Public domain W3C validator