Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difsn | Structured version Visualization version GIF version |
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difsn | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4680 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴)) | |
2 | simpl 486 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | nelelne 3049 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ≠ 𝐴)) | |
4 | 3 | ancld 554 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴))) |
5 | 2, 4 | impbid2 229 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 5 | syl5bb 286 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥 ∈ 𝐵)) |
7 | 6 | eqrdv 2756 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∖ cdif 3857 {csn 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-v 3411 df-dif 3863 df-sn 4526 |
This theorem is referenced by: difsnb 4699 difsnexi 7488 domdifsn 8634 domunsncan 8651 frfi 8809 infdifsn 9166 dfn2 11960 hashgt23el 13848 clslp 21862 xrge00 30834 lindsadd 35365 lindsenlbs 35367 poimirlem2 35374 poimirlem4 35376 poimirlem6 35378 poimirlem7 35379 poimirlem8 35380 poimirlem19 35391 poimirlem23 35395 supxrmnf2 42481 infxrpnf2 42513 dvmptfprodlem 42997 hoiprodp1 43638 |
Copyright terms: Public domain | W3C validator |