![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difsn | Structured version Visualization version GIF version |
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
difsn | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4795 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴)) | |
2 | simpl 481 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | nelelne 3031 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ≠ 𝐴)) | |
4 | 3 | ancld 549 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴))) |
5 | 2, 4 | impbid2 225 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 5 | bitrid 282 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥 ∈ 𝐵)) |
7 | 6 | eqrdv 2724 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3944 {csn 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-v 3464 df-dif 3950 df-sn 4634 |
This theorem is referenced by: difsnb 4815 difsnexi 7771 domdifsn 9094 domunsncan 9112 frfi 9324 infdifsn 9702 dfn2 12539 hashgt23el 14443 clslp 23146 xrge00 32897 lindsadd 37316 lindsenlbs 37318 poimirlem2 37325 poimirlem4 37327 poimirlem6 37329 poimirlem7 37330 poimirlem8 37331 poimirlem19 37342 poimirlem23 37346 supxrmnf2 45066 infxrpnf2 45096 dvmptfprodlem 45583 hoiprodp1 46227 |
Copyright terms: Public domain | W3C validator |