MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsn Structured version   Visualization version   GIF version

Theorem difsn 4765
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4753 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 482 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 nelelne 3025 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
43ancld 550 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
52, 4impbid2 226 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
61, 5bitrid 283 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
76eqrdv 2728 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-sn 4593
This theorem is referenced by:  difsnb  4773  difsnexi  7740  domdifsn  9028  domunsncan  9046  frfi  9239  infdifsn  9617  dfn2  12462  hashgt23el  14396  clslp  23042  xrge00  32960  lindsadd  37614  lindsenlbs  37616  poimirlem2  37623  poimirlem4  37625  poimirlem6  37627  poimirlem7  37628  poimirlem8  37629  poimirlem19  37640  poimirlem23  37644  supxrmnf2  45436  infxrpnf2  45466  dvmptfprodlem  45949  hoiprodp1  46593
  Copyright terms: Public domain W3C validator