MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsn Structured version   Visualization version   GIF version

Theorem difsn 4747
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4735 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 482 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 nelelne 3027 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
43ancld 550 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
52, 4impbid2 226 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
61, 5bitrid 283 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
76eqrdv 2729 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-sn 4574
This theorem is referenced by:  difsnb  4755  difsnexi  7694  domdifsn  8973  domunsncan  8990  frfi  9169  infdifsn  9547  dfn2  12394  hashgt23el  14331  chnccat  18532  clslp  23063  xrge00  32995  lindsadd  37663  lindsenlbs  37665  poimirlem2  37672  poimirlem4  37674  poimirlem6  37676  poimirlem7  37677  poimirlem8  37678  poimirlem19  37689  poimirlem23  37693  supxrmnf2  45541  infxrpnf2  45571  dvmptfprodlem  46052  hoiprodp1  46696
  Copyright terms: Public domain W3C validator