| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsn | Structured version Visualization version GIF version | ||
| Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| difsn | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4753 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴)) | |
| 2 | simpl 482 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | nelelne 3025 | . . . . 5 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → 𝑥 ≠ 𝐴)) | |
| 4 | 3 | ancld 550 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴))) |
| 5 | 2, 4 | impbid2 226 | . . 3 ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐴) ↔ 𝑥 ∈ 𝐵)) |
| 6 | 1, 5 | bitrid 283 | . 2 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥 ∈ 𝐵)) |
| 7 | 6 | eqrdv 2728 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∖ {𝐴}) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 |
| This theorem is referenced by: difsnb 4773 difsnexi 7740 domdifsn 9028 domunsncan 9046 frfi 9239 infdifsn 9617 dfn2 12462 hashgt23el 14396 clslp 23042 xrge00 32960 lindsadd 37614 lindsenlbs 37616 poimirlem2 37623 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem8 37629 poimirlem19 37640 poimirlem23 37644 supxrmnf2 45436 infxrpnf2 45466 dvmptfprodlem 45949 hoiprodp1 46593 |
| Copyright terms: Public domain | W3C validator |