MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsn Structured version   Visualization version   GIF version

Theorem difsn 4736
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4725 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 482 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 nelelne 3044 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
43ancld 550 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
52, 4impbid2 225 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
61, 5syl5bb 282 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
76eqrdv 2737 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  cdif 3888  {csn 4566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-v 3432  df-dif 3894  df-sn 4567
This theorem is referenced by:  difsnb  4744  difsnexi  7602  domdifsn  8811  domunsncan  8828  frfi  9020  infdifsn  9376  dfn2  12229  hashgt23el  14120  clslp  22280  xrge00  31274  lindsadd  35749  lindsenlbs  35751  poimirlem2  35758  poimirlem4  35760  poimirlem6  35762  poimirlem7  35763  poimirlem8  35764  poimirlem19  35775  poimirlem23  35779  supxrmnf2  42927  infxrpnf2  42957  dvmptfprodlem  43439  hoiprodp1  44080
  Copyright terms: Public domain W3C validator