MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsn Structured version   Visualization version   GIF version

Theorem difsn 4762
Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
difsn 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsn 4750 . . 3 (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ (𝑥𝐵𝑥𝐴))
2 simpl 482 . . . 4 ((𝑥𝐵𝑥𝐴) → 𝑥𝐵)
3 nelelne 3024 . . . . 5 𝐴𝐵 → (𝑥𝐵𝑥𝐴))
43ancld 550 . . . 4 𝐴𝐵 → (𝑥𝐵 → (𝑥𝐵𝑥𝐴)))
52, 4impbid2 226 . . 3 𝐴𝐵 → ((𝑥𝐵𝑥𝐴) ↔ 𝑥𝐵))
61, 5bitrid 283 . 2 𝐴𝐵 → (𝑥 ∈ (𝐵 ∖ {𝐴}) ↔ 𝑥𝐵))
76eqrdv 2727 1 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-sn 4590
This theorem is referenced by:  difsnb  4770  difsnexi  7737  domdifsn  9024  domunsncan  9041  frfi  9232  infdifsn  9610  dfn2  12455  hashgt23el  14389  clslp  23035  xrge00  32953  lindsadd  37607  lindsenlbs  37609  poimirlem2  37616  poimirlem4  37618  poimirlem6  37620  poimirlem7  37621  poimirlem8  37622  poimirlem19  37633  poimirlem23  37637  supxrmnf2  45429  infxrpnf2  45459  dvmptfprodlem  45942  hoiprodp1  46586
  Copyright terms: Public domain W3C validator