![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimadfsn | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
cnvimadfsn | ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 6062 | . 2 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅)} | |
2 | eldifvsn 4800 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | elv 3480 | . . . . 5 ⊢ (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍) |
4 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | vex 3478 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | opelcnv 5881 | . . . . . 6 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) |
7 | df-br 5149 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
8 | 6, 7 | bitr4i 277 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 ↔ 𝑥𝑅𝑦) |
9 | 3, 8 | anbi12ci 628 | . . . 4 ⊢ ((𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
10 | 9 | exbii 1850 | . . 3 ⊢ (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
11 | 10 | abbii 2802 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
12 | 1, 11 | eqtri 2760 | 1 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 Vcvv 3474 ∖ cdif 3945 {csn 4628 ⟨cop 4634 class class class wbr 5148 ◡ccnv 5675 “ cima 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: suppimacnvss 8157 suppimacnv 8158 |
Copyright terms: Public domain | W3C validator |