MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimadfsn Structured version   Visualization version   GIF version

Theorem cnvimadfsn 8102
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
cnvimadfsn (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦

Proof of Theorem cnvimadfsn
StepHypRef Expression
1 dfima3 6012 . 2 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)}
2 eldifvsn 4749 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍))
32elv 3441 . . . . 5 (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍)
4 vex 3440 . . . . . . 7 𝑦 ∈ V
5 vex 3440 . . . . . . 7 𝑥 ∈ V
64, 5opelcnv 5821 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 df-br 5092 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
86, 7bitr4i 278 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅𝑥𝑅𝑦)
93, 8anbi12ci 629 . . . 4 ((𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑍))
109exbii 1849 . . 3 (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110abbii 2798 . 2 {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
121, 11eqtri 2754 1 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  cdif 3899  {csn 4576  cop 4582   class class class wbr 5091  ccnv 5615  cima 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  suppimacnvss  8103  suppimacnv  8104
  Copyright terms: Public domain W3C validator