| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimadfsn | Structured version Visualization version GIF version | ||
| Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
| Ref | Expression |
|---|---|
| cnvimadfsn | ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 6018 | . 2 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅)} | |
| 2 | eldifvsn 4750 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍)) | |
| 3 | 2 | elv 3442 | . . . . 5 ⊢ (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍) |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | vex 3441 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 6 | 4, 5 | opelcnv 5827 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | df-br 5096 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 𝑥𝑅𝑦) |
| 9 | 3, 8 | anbi12ci 629 | . . . 4 ⊢ ((𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
| 10 | 9 | exbii 1849 | . . 3 ⊢ (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
| 11 | 10 | abbii 2800 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
| 12 | 1, 11 | eqtri 2756 | 1 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {cab 2711 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 {csn 4577 〈cop 4583 class class class wbr 5095 ◡ccnv 5620 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: suppimacnvss 8111 suppimacnv 8112 |
| Copyright terms: Public domain | W3C validator |