![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimadfsn | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
cnvimadfsn | ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 6061 | . 2 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅)} | |
2 | eldifvsn 4799 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | elv 3478 | . . . . 5 ⊢ (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍) |
4 | vex 3476 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | vex 3476 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | opelcnv 5880 | . . . . . 6 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) |
7 | df-br 5148 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅) | |
8 | 6, 7 | bitr4i 277 | . . . . 5 ⊢ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 ↔ 𝑥𝑅𝑦) |
9 | 3, 8 | anbi12ci 626 | . . . 4 ⊢ ((𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
10 | 9 | exbii 1848 | . . 3 ⊢ (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
11 | 10 | abbii 2800 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
12 | 1, 11 | eqtri 2758 | 1 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 ≠ wne 2938 Vcvv 3472 ∖ cdif 3944 {csn 4627 ⟨cop 4633 class class class wbr 5147 ◡ccnv 5674 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: suppimacnvss 8160 suppimacnv 8161 |
Copyright terms: Public domain | W3C validator |