![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimadfsn | Structured version Visualization version GIF version |
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.) |
Ref | Expression |
---|---|
cnvimadfsn | ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima3 6092 | . 2 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅)} | |
2 | eldifvsn 4822 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍)) | |
3 | 2 | elv 3493 | . . . . 5 ⊢ (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦 ≠ 𝑍) |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | opelcnv 5906 | . . . . . 6 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | df-br 5167 | . . . . . 6 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
8 | 6, 7 | bitr4i 278 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 𝑥𝑅𝑦) |
9 | 3, 8 | anbi12ci 628 | . . . 4 ⊢ ((𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅) ↔ (𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
10 | 9 | exbii 1846 | . . 3 ⊢ (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅) ↔ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)) |
11 | 10 | abbii 2812 | . 2 ⊢ {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ 〈𝑦, 𝑥〉 ∈ ◡𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
12 | 1, 11 | eqtri 2768 | 1 ⊢ (◡𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦 ∧ 𝑦 ≠ 𝑍)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ≠ wne 2946 Vcvv 3488 ∖ cdif 3973 {csn 4648 〈cop 4654 class class class wbr 5166 ◡ccnv 5699 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: suppimacnvss 8214 suppimacnv 8215 |
Copyright terms: Public domain | W3C validator |