MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimadfsn Structured version   Visualization version   GIF version

Theorem cnvimadfsn 8196
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
cnvimadfsn (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦

Proof of Theorem cnvimadfsn
StepHypRef Expression
1 dfima3 6083 . 2 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)}
2 eldifvsn 4802 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍))
32elv 3483 . . . . 5 (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍)
4 vex 3482 . . . . . . 7 𝑦 ∈ V
5 vex 3482 . . . . . . 7 𝑥 ∈ V
64, 5opelcnv 5895 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 df-br 5149 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
86, 7bitr4i 278 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅𝑥𝑅𝑦)
93, 8anbi12ci 629 . . . 4 ((𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑍))
109exbii 1845 . . 3 (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110abbii 2807 . 2 {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
121, 11eqtri 2763 1 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  Vcvv 3478  cdif 3960  {csn 4631  cop 4637   class class class wbr 5148  ccnv 5688  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  suppimacnvss  8197  suppimacnv  8198
  Copyright terms: Public domain W3C validator