MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimadfsn Structured version   Visualization version   GIF version

Theorem cnvimadfsn 8197
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
cnvimadfsn (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑍,𝑦

Proof of Theorem cnvimadfsn
StepHypRef Expression
1 dfima3 6081 . 2 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)}
2 eldifvsn 4797 . . . . . 6 (𝑦 ∈ V → (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍))
32elv 3485 . . . . 5 (𝑦 ∈ (V ∖ {𝑍}) ↔ 𝑦𝑍)
4 vex 3484 . . . . . . 7 𝑦 ∈ V
5 vex 3484 . . . . . . 7 𝑥 ∈ V
64, 5opelcnv 5892 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 df-br 5144 . . . . . 6 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
86, 7bitr4i 278 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅𝑥𝑅𝑦)
93, 8anbi12ci 629 . . . 4 ((𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ (𝑥𝑅𝑦𝑦𝑍))
109exbii 1848 . . 3 (∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
1110abbii 2809 . 2 {𝑥 ∣ ∃𝑦(𝑦 ∈ (V ∖ {𝑍}) ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)} = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
121, 11eqtri 2765 1 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2714  wne 2940  Vcvv 3480  cdif 3948  {csn 4626  cop 4632   class class class wbr 5143  ccnv 5684  cima 5688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698
This theorem is referenced by:  suppimacnvss  8198  suppimacnv  8199
  Copyright terms: Public domain W3C validator