Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleq2w2ALT Structured version   Visualization version   GIF version

Theorem eleq2w2ALT 35220
Description: Alternate proof of eleq2w2 2734 and special instance of eleq2 2827. (Contributed by BJ, 22-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eleq2w2ALT (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))

Proof of Theorem eleq2w2ALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . . 3 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
21biimpi 215 . 2 (𝐴 = 𝐵 → ∀𝑦(𝑦𝐴𝑦𝐵))
3 eleq1w 2821 . . . 4 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
4 eleq1w 2821 . . . 4 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
53, 4bibi12d 346 . . 3 (𝑦 = 𝑥 → ((𝑦𝐴𝑦𝐵) ↔ (𝑥𝐴𝑥𝐵)))
65spvv 2000 . 2 (∀𝑦(𝑦𝐴𝑦𝐵) → (𝑥𝐴𝑥𝐵))
72, 6syl 17 1 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator